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Introduction
Metabolic syndrome (MetS) is a pathophysiologic condition char-
acterized by increased visceral adiposity, dyslipidemia, predia-
betes, and hypertension. This cluster of risk factors predispos-
es to type 2 diabetes (T2D) and nonalcoholic fatty liver disease 
(NAFLD) and increases the risk of microvascular complications 
and cardiovascular (CV) events. With the global increase in obe-
sity, the prevalence of MetS has reached epidemic proportions. 
The pathophysiology of MetS and its comorbidities is complex and 
includes alterations in lipid and glucose metabolism accompanied 
by multi-organ inflammation; because of this complexity, current 
treatments address the individual components (1).

Over the last decades, the PPARs, which are members of the 
nuclear receptor superfamily of transcription factors (TFs), have 
been targeted to fight MetS and its complications. Three PPAR 
isotypes with different tissue distribution, ligand specificity, and 
metabolic regulatory activities exist in mammals: PPARα (NR1C1), 
PPARβ/δ (NR1C2), and PPARγ (NR1C3). PPARs regulate many met-
abolic pathways upon activation by endogenous ligands, such as fatty 
acids (FAs) and derivatives, or synthetic agonists, which bind to the 
ligand-binding domain of the receptor, triggering a conformational 
change. Subsequent recruitment of coactivators to the PPAR/ret-
inoid X receptor heterodimer assembled at specific DNA response 
elements called PPAR response elements (PPREs) results in transac-
tivation of target genes. In addition, PPAR activation attenuates the 
expression of pro-inflammatory genes, mostly through transrepres-
sive mechanisms (2). This Review focuses on the metabolic effects 
of PPAR isotypes as well as synthetic PPAR ligands that are currently 
used in the clinic or are under development.

Endogenous PPAR ligands
PPARs are activated by FAs and their derivatives, and the lev-
el of physiologic receptor activation depends on the balance 
between ligand production and inactivation. Endogenous PPAR 

ligands originate from three main sources: diet, de novo lipogen-
esis (DNL), and lipolysis, all of which are processes that integrate 
changes in nutritional status and circadian rhythms (3). PPARs 
control these metabolic processes to maintain metabolic flexibil-
ity, a prerequisite for the preservation of health.

Dietary lipids regulate PPAR activity, as evidenced by the 
increased target gene expression of PPARα in liver (4) and PPARβ/δ 
in skeletal muscle (SKM) (5) upon high-fat diet (HFD) feeding in 
mice. Tissue-specific deficiency of FA synthase — a key enzyme 
in DNL — impairs PPARα activity and identifies DNL as another 
source of PPAR ligands (6, 7). PPARα ligands originating from DNL 
are not only simple FAs but include more complex molecules such 
as phosphatidylcholines (8). Lipolysis is a third source of endoge-
nous PPAR activators. Angiopoietin-like (ANGPTL) proteins are 
secreted glycoproteins that inhibit lipoprotein lipase (LPL), there-
by controlling the plasma lipid pool according to lipid availability 
and cellular fuel demand. ANGPTL4 expression is induced in sev-
eral tissues including adipose tissue, liver, and SKM by circulating 
FAs via PPARs, leading to inhibition of LPL and decreased plasma 
triglyceride-derived FA uptake, thus forming a negative feedback 
loop (9). Intracellular lipolysis also provides PPAR ligands. Defi-
ciency of adipose triglyceride lipase, which lipolyzes lipid droplet 
triglycerides, decreases PPAR target gene expression in various 
tissues (10–13). Ligand availability is also modulated by FA degra-
dation in peroxisomes, which are regulated by PPARs (14). Thus, 
PPAR activity relies on a careful balance between ligand produc-
tion and degradation to meet fluctuating energy demands.

Contrasting metabolic effects of ligand-
activated PPARα and PPARγ
Although they share similarities in function and mechanism of 
action, PPAR isotypes display important physiologic and phar-
macologic differences. This section discusses the clinical and 
genetic evidence of contrasting PPARα and PPARγ effects, and 
sheds light on the cellular and molecular mechanisms underly-
ing these differences.

Clinical effects of PPARα and PPARγ activation. Fibrates are 
synthetic PPARα ligands used to treat dyslipidemia. Except for 
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improves the lipid profile, whereas activation of PPARγ improves 
glycemic control and insulin sensitivity.

Genetic evidence of contrasting PPARα and PPARγ functions. 
The different phenotypes of patients carrying SNPs and mutations 
in PPARα or PPARγ coding sequences highlight their contrasting 
functions. PPARA variants are associated with perturbations of 
lipid metabolism (39) and CV risk (40). PPARA SNPs also asso-
ciate with conversion from impaired glucose tolerance to T2D 
(41). PPARA gene variation also influences the age of onset and 
progression of T2D (42). In contrast, dominant-negative muta-
tions in the ligand-binding domain of PPARγ result in severe 
insulin resistance (43). Accordingly, rare variants in PPARG with 
decreased adipogenic properties are associated with increased 
T2D risk (44). GWAS have also revealed an association between 
PPARG SNPs and T2D, although not all studies concur (45, 46). 
A recently developed functional assay identified PPARG variants 
with altered PPARγ function (47). SNPs within DNA recognition 
motifs for PPARγ or cooperating factors that alter PPARγ recruit-
ment to chromatin modulate the response to anti-diabetic drugs  
(48). Additionally, SNPs in PPARγ DNA-binding sites are highly 
enriched among SNPs associated with triglyceride and HDL-C 
levels in GWAS (48). Taken together, these genetic data confirm 
the functional dichotomy between PPARα and PPARγ in humans, 
underscoring the effects of PPARα on lipid metabolism and con-
version from impaired glucose tolerance to T2D and the role of 
PPARγ in T2D and the regulation of glucose homeostasis.

Cellular and molecular mechanisms underlying PPARα and 
PPARγ functions. The function of PPARα (Figure 1) is best charac-
terized in the liver, where it regulates genes involved in lipid and 
plasma lipoprotein metabolism during the nutritional transition 
phases (49, 50). During fasting, PPARα increases hepatic uptake 
and mitochondrial transport of FA originating from adipose tis-
sue lipolysis through transcriptional upregulation of FA transport 
proteins and carnitine palmitoyltransferases. PPARα induces 
expression of mitochondrial acyl-CoA dehydrogenases, hence 
stimulating hepatic FA oxidation (FAO) and increasing acetyl-CoA 
production. Upon prolonged fasting, acetyl-CoA is preferentially 
converted into ketone bodies to provide energy for extrahepatic 
tissues. PPARα also upregulates mitochondrial hydroxymethylgl-
utaryl-CoA synthase (HMGS), a rate-limiting ketogenesis enzyme 
(51, 52). Glucagon receptor signaling (53) and the IRE1α/XBP1 
pathway (54) cooperate with PPARα to control metabolic path-
ways during fasting. In the fed state, PPARα coordinates DNL to 
supply FAs, which are stored as hepatic triglycerides and used in 
periods of starvation. A crucial step in DNL is the citrate-malate 
shuttle, which controls the efflux of acetyl-CoA from the mito-
chondria to the cytosol, where it serves as a precursor for FA 
synthesis. Citrate carrier, an essential component of this shuttle 
system, is a direct PPARα target gene in hepatocytes (55). Addi-
tionally, PPARα increases protein levels of the lipogenic factor 
SREBP1c by promoting proteolytic cleavage of its precursor (56), 
hence stimulating transcription of its target genes (57). In these 
postprandial conditions, mTORC1, activated through the insulin- 
dependent PI3K pathway, inhibits PPARα-mediated hepatic keto-
genesis (58). Thus, PPARα contributes to the maintenance of met-
abolic flexibility by adapting fuel utilization to fuel availability, 
and its expression decreases in conditions of metabolic inflexi-

the weak pan-agonist bezafibrate, all clinically used fibrates are 
specific activators of PPARα. Fibrate outcome trials such as the 
Helsinki Heart Study (HHS) (15), Veterans Affairs High-Density 
Lipoprotein Cholesterol Intervention Trial (VA-HIT) (16), Bezaf-
ibrate Infarction Prevention (BIP) (17), Fenofibrate Intervention 
and Event Lowering in Diabetes (FIELD) (18), and Action to Con-
trol Cardiovascular Risk in Diabetes (ACCORD) (19) consistently 
show beneficial effects on plasma lipids, particularly in normal-
izing the typical MetS dyslipidemia characterized by an “athero-
genic lipid triad” (high LDL cholesterol [LDL-C] and triglycerides, 
low HDL cholesterol [HDL-C]). Fibrate therapy significantly 
decreases triglycerides and increases HDL-C, whereas LDL-C 
decreases except in patients with severe hypertriglyceridemia and 
low baseline LDL-C. Fibrate therapy, however, does not change 
circulating FA concentrations (20). Although both the FIELD and 
ACCORD trials showed a trend towards decreased CV risk (pri-
mary endpoint) in T2D, post-hoc and meta-analysis revealed that 
dyslipidemic patients (high triglyceride and low HDL-C levels) 
show the highest CV reduction (21, 22). Fibrates do not improve 
glucose homeostasis in people with T2D (18, 19, 23). However, 
PPARα activation improves glucose homeostasis in prediabetic 
patients (24) and may prevent conversion of prediabetes to overt 
T2D. Fibrates exert few adverse effects. Most compounds induce 
mild hypercreatininemia and hyperhomocysteinemia, but these 
effects are pharmacodynamic markers of PPARα activation rath-
er than indicators of renal dysfunction (25). Hepatic carcinogen-
esis has been observed in rodents treated with fibrates but not in 
humans or non-human primates, likely due to lower peroxisome 
and peroxisomal β-oxidation levels in human liver (26).

Thiazolidinediones (TZDs, also referred to as glitazones), 
synthetic PPARγ ligands, are anti-diabetic drugs with potent 
insulin-sensitizing effects that confer long-term glycemic control 
(27). However, their clinical use has been challenged due to side 
effects such as body weight gain, edema, and bone fractures (2). 
The increase in body weight upon TZD administration is due to 
PPARγ-dependent white adipose tissue (WAT) expansion (28) and 
fluid retention caused by PPARγ activation in the kidney collect-
ing ducts (29). The increased fracture risk in TZD-treated patients 
results from a PPARγ-driven rebalancing of bone remodeling in 
favor of net bone loss. Indeed, PPARγ activation in bone marrow 
stimulates mesenchymal progenitor differentiation into the adi-
pocyte lineage, suppressing osteoblast and hence bone formation 
through pathways involving protein phosphatase PP5 (30, 31). 
Moreover, pharmacologic, but not physiologic, PPARγ activation 
promotes osteoclast formation thereby increasing bone resorp-
tion (32, 33). Rosiglitazone and pioglitazone increase plasma lev-
els of the insulin-sensitizing adipokine adiponectin (2). They also 
increase HDL-C and reduce circulating FA levels (34), but have 
differential effects on triglyceride and LDL-C levels and CV risk. 
Pioglitazone, a full PPARγ agonist with modest PPARα-activating 
properties (35), lowers triglycerides, increases HDL-C, and reduc-
es CV events in people with T2D (36) or who are insulin resis-
tant (37). In contrast, the pure PPARγ agonist rosiglitazone does 
not decrease CV risk in people with T2D but does increase both 
HDL-C and LDL-C (38). Hence, the beneficial effects of piogli-
tazone on triglycerides and CV events are likely due to combined 
PPARα and PPARγ activation. In summary, activation of PPARα 
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(67), an effect not observed in PPARα agonist–treated patients 
(68). In line with this, administration of fenofibrate to people 
with MetS increases the fractional catabolic rate of VLDL-APOB, 
intermediate-density lipoprotein–APOB (IDL-APOB), and LDL-
APOB without affecting VLDL-APOB production (69). The rise 
in plasma HDL-C upon PPARα activation is linked to increased 
synthesis of major HDL-C constituents, apolipoproteins APO-AI 
and APO-AII (70), and induction of phospholipid transfer protein 
(PLTP) (71). Of note, differences between rodents and humans 
with respect to apolipoprotein regulation exist, as APO-AI and 
APO-AV are direct positive PPARα target genes in human but not 
murine liver (49). Through FAO, PPARα activation leads to ener-
gy dissipation not only in the liver but also in SKM (72) and WAT 
(73). In brown adipose tissue (BAT) PPARα stimulates lipid oxi-
dation as well as thermogenesis in synergy with PPARγ coactiva-

bility such as NAFLD (59). PPARα activity is also dysregulated by 
microRNA-10b (60), microRNA-21 (61), and JNK (62), all of which 
are upregulated in NAFLD.

PPARα activation reduces plasma triglyceride-rich lipopro-
teins by enhancing FA uptake and FAO and increasing the activ-
ity of LPL, which hydrolyzes lipoprotein triglycerides. PPARα 
stimulation of LPL enzyme activity is both direct, through PPRE- 
dependent activation of LPL (63), as well as indirect, through 
decreasing the expression of the LPL inhibitor and pro-athero-
genic APO-CIII (64, 65) and increasing the expression of the LPL 
activator APO-AV (66). Reduced VLDL production contributes to 
the triglyceride-lowering effects of PPARα activation mainly in 
rodents and, likely to a lesser extent, in humans. Interestingly, a 
SNP in the TM6SF7 gene reduces VLDL production and lowers 
circulating triglyceride levels while promoting hepatic steatosis 

Figure 1. PPARα activation stimulates FA and triglyceride metabolism. During fasting (yellow), FAs released from WAT are taken up by the liver and 
transported to mitochondria, where FAO takes place, to produce acetyl-CoA (AcCoA), which can be further converted to ketone bodies and serve as fuel 
for peripheral tissues. In the fed state (green), acetyl-CoA is shuttled to the cytosol, where DNL takes place. The effects of PPARα activation and PPARα 
target genes are indicated in pink. FAO is also stimulated by PPARα in WAT and SKM. By regulating hepatic apolipoprotein synthesis, PPARα activation 
decreases plasma levels of triglycerides (TG) and LDL-C and increases HDL-C. PPARα also acts on BAT, gut, and pancreas, but its central effects are unclear. 
Blue brackets indicate PPARα actions that are mainly restricted to mice and do not occur (e.g., peroxisome proliferation, reduced liver fat content) or occur 
to a lesser extent (e.g., reduced APO-B production) in humans. ACAD, acyl-CoA dehydrogenase; ACC, acetyl-CoA carboxylase; CM, chylomicron; CPT, carni-
tine palmitoyltransferase; FACoA, fatty acyl-CoA; FAS, fatty acid synthase; FATP, fatty acid transport protein.
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PPARγ is highly expressed in WAT, where it controls FA uptake 
and lipogenesis. Target genes contributing to this activity include 
FA binding protein-4 and the FA translocase CD36 (79). Addition-
ally, PPARγ is a master regulator of white adipocyte differentia-
tion. Multiple TFs including the glucocorticoid receptor (GR) and 
STAT5A cooperatively induce PPARγ during adipogenesis (28), 
while other TFs such as C/EBPα cooperate with PPARγ to stimu-
late genomic binding and transcription of target genes (80), there-
by regulating both housekeeping and adipocyte-specific functions 
(81). These PPARγ-mediated changes in gene expression are 
preceded by chromatin remodeling involving both adipocyte- 
specific TFs such as C/EBPβ (82) as well as ubiquitous TFs such 
as CCCTC-binding factor (CTCF) (83). Interestingly, promotion 
of adipogenesis by the mTORC1 complex occurs through stimu-

tor-1α (PGC1A) (74). While PPARα activation reduces weight gain 
in rodents (73), there is no evidence of PPARα effects on body 
mass in humans (18, 19).

The inability of fibrates to improve glucose homeostasis in 
people with T2D (18, 19) may result from several mechanisms. 
Glucose handling in liver and peripheral tissues is reduced as a 
consequence of increased FAO (75). PPARα activation also reduc-
es pyruvate kinase (PK) and induces PDK4 expression in the liver, 
decreases glycolysis, and enhances gluconeogenesis in mice (76). 
As discussed above, clinical and genetic data have revealed a role 
for PPARα in preventing conversion from impaired glucose toler-
ance to overt T2D. This effect of PPARα might stem from pancre-
atic β cell protection from lipotoxicity (77) and decreases in insulin 
clearance mediated by the biliary glycoprotein CEACAM1 (78).

Figure 2. PPARγ activation increases whole-body insulin sensitivity. In WAT, PPARγ activation (effects are indicated in pink) enhances FA uptake and 
storage, lipogenesis, and adipogenesis (lipid steal action). PPARγ activation lowers circulating FA levels, alleviating lipotoxicity and increasing insulin 
sensitivity. PPARγ agonism induces adiponectin production by WAT, further enhancing insulin sensitivity and lowering blood glucose. PPARγ also exerts 
metabolic effects on BAT, brain, and pancreas. Increased hepatic steatosis upon PPARγ activation occurs in mice but not in humans (blue brackets), who 
display increased hepatic insulin sensitivity due to reduced FA flux from WAT.



The Journal of Clinical Investigation   R E V I E W  S E R I E S :  N U C L E A R  R E C E P T O R S

1 2 0 6 jci.org   Volume 127   Number 4   April 2017

different genes remain to be established. Several explanations 
and hypotheses have been put forward. First, PPARα is predomi-
nantly expressed in the liver, whereas PPARγ expression is high-
est in WAT (2). The different PPARs emerged during evolution 
from gene duplications, but subsequent sequence variations of 
their promoters and 3′-UTRs have contributed to acquisition 
of differential expression patterns and functions (101). Tissue- 
specific chromatin and TF environments also play a role by 
restricting PPAR recruitment to selective enhancers and there-
fore specifying PPAR target genes (28). This is illustrated by the 
tissue-specific PPARγ cistromes in white adipocytes and mac-
rophages, both of which express high PPARγ levels. The macro-
phage-specific PPARγ cistrome is defined by the pioneer TF PU.1 
(102), which induces nucleosome remodeling and histone mod-
ifications, promoting the recruitment of additional TFs (103). In 
white adipocytes, however, these macrophage-specific binding 
regions are marked with repressive histone modifications, thus 
disabling PPARγ binding (104). Furthermore, PPARγ cistromes 
differ between white adipocyte depots (epididymal vs. inguinal) 
in association with depot-specific gene expression patterns (105).

Nutritional status also contributes to differential PPAR regula-
tion. PPARα is a metabolic sensor, switching its activity from coor-
dination of lipogenesis in the fed state to promotion of FA uptake 
and FAO during a fasting state (49). PPARα activation during fast-
ing involves PGC1α coactivator induction by the fasting-induced 
TF EB (106). In addition to PPARα itself (107), circadian transcrip-
tion of genes encoding acyl-CoA thioesterases coordinates cyclic 
intracellular production of FA ligands (108). The TF CREBH, 
a circadian regulator of hepatic lipid metabolism, rhythmically 
interacts with PPARα and regulates its activity (109). Adjustment 
of PPARα transcriptional activity to nutritional status is also con-
trolled by kinases phosphorylating PPARα or its coregulators. In 
the fed state, PPARα activity is enhanced through insulin-activated 
MAPK and glucose-activated PKC, while glucagon-activated PKA 
and AMPK increase PPARα signaling in fasting (49). Moreover, 
the fasting response is co-controlled by PPARα and GRα, which 
show extensive chromatin colocalization and interact to induce 
lipid metabolism genes upon prolonged fasting through genomic 
AMPK recruitment (110). Conversely, GRβ antagonizes glucocorti-
coid signaling during fasting via inhibition of GRα and PPARα, thus 
increasing inflammation and hepatic lipid accumulation (111).

PPARγ activity is higher in the fed state, in line with its role 
in lipid synthesis and storage. PPARγ activity in WAT is repressed 
during fasting via mechanisms involving SIRT1 (112) or AMPK 
(113). In mice, the amplitude of hepatic circadian clock gene 
expression is reduced by HFD feeding (114), whereas circadi-
an rhythmicity of PPARγ and genes containing the PPARγ bind-
ing site is induced (115). Thus, the HFD-induced transcriptional 
reprogramming relies at least in part on changes in expression, 
oscillation pattern, and chromatin recruitment of PPARγ. Gut 
microbiota, which also exhibit circadian activity (116), are driv-
ers of HFD-induced hepatic transcriptional reprogramming by 
PPARγ in mice (117). Nutritional status also links PPARs to FGF21 
signaling, as fasting increases PPARα-dependent FGF21 expres-
sion in liver, further enhancing FAO and ketogenesis (118). In 
WAT, PPARγ induces FGF21 expression (119), where it acts as an 
autocrine factor in the fed state, regulating PPARγ activity through 

lation of PPARγ translation (84) and transcriptional activity (85), 
which contrasts with the inhibitory effect of mTORC1 on PPARα 
(discussed above) (58).

In contrast to WAT, PPARγ target genes in BAT encode ther-
mogenic proteins and inducers of mitochondrial biogenesis such 
as PGC1A and uncoupling protein-1 (UCP1, also known as ther-
mogenin). PPARγ promotes brown adipocyte differentiation, but 
additional TFs including PPARα are required to switch on their 
thermogenic program (74).

PPARγ enhances whole body insulin sensitivity through mul-
tiple mechanisms (Figure 2). By augmenting WAT expandability, 
PPARγ shifts lipids from liver and SKM to WAT, thereby indirectly 
increasing glucose utilization in liver and peripheral tissues. As a 
result of this “lipid stealing,” lipotoxicity, which impairs insulin 
signaling, is alleviated. PPARγ also regulates the expression of 
adipocyte hormones that modulate liver and SKM insulin sensi-
tivity such as adiponectin and leptin (86, 87). Results of a Men-
delian randomization study refuted a causal role for adiponectin 
in CV disease (88), which may explain why pure PPARγ agonists, 
such as rosiglitazone, are not cardioprotective. Finally, PPARγ 
activation improves pancreatic β cell function and survival by 
preventing FA-induced impairment of insulin secretion (77) and 
enhancing the unfolded protein response (89). Thus, whereas 
PPARα activation leads to energy dissipation, activation of PPARγ 
stimulates energy storage in WAT, thereby sensitizing liver and 
peripheral tissues to insulin.

The contrasting mechanisms of action of PPARα and PPARγ 
are also illustrated by their opposite function on hepatic lipid 
metabolism. Reduced hepatic steatosis due to increased FAO 
in hepatocytes occurs upon PPARα activation in rodent models 
of NAFLD (90, 91), while PPARγ activation in rodents (but not 
humans) increases liver fat accumulation by enhancing hepatic 
expression of PPARγ-dependent genes involved in lipogenesis 
(79, 92). Interestingly, hepatic PPARγ expression levels deter-
mine liver steatosis: mice with low hepatic PPARγ expression are 
resistant to diet-induced development of fatty liver when treat-
ed with rosiglitazone, whereas liver steatosis is exacerbated in 
obese mice expressing high hepatic levels of PPARγ (93). In mice, 
PPARγ expression in liver is regulated by the dimeric AP-1 protein 
complex, thereby controlling hepatic steatosis (94). However, in 
humans with NAFLD, PPARγ expression is unaltered (59) and TZD 
treatment decreases hepatic steatosis, likely due to decreased FA 
flux from WAT to liver (95, 96).

Energy homeostasis is also regulated by inter-organ communi-
cations involving the brain and the gut. Neuronal PPARγ deletion in 
mice diminishes food intake and energy expenditure, thus reducing 
weight gain upon HFD feeding, suggesting that brain PPARγ exerts 
hyperphagic effects and promotes obesity (97). Similarly, central 
PPARα activation may also increase food intake (6), although not 
all studies concur (98). In the intestine, PPARα activation suppress-
es postprandial hyperlipidemia by enhancing intestinal epithelial 
cell FAO (99). Furthermore, intestinal PPARα activation reduces 
cholesterol esterification, suppresses chylomicron production, and 
increases HDL synthesis by enterocytes (100).

Molecular basis for differential activities of PPARα and PPARγ. 
The exact mechanisms through which the different PPAR isotypes 
— which share similar DNA-binding motifs — bind and regulate 
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a feedforward mechanism (120). In the pancreas, PPARγ agonism 
reverses high glucose–induced islet dysfunction by enhancing 
FGF21 signaling (121). FGF1 is also induced by PPARγ in WAT, and 
the PPARγ/FGF1 axis is critical for maintaining metabolic homeo-
stasis and insulin sensitization (122).

Combating inflammation: a shared function  
of PPARα and PPARγ
MetS is accompanied by a low-grade inflammatory state in dif-
ferent metabolic tissues — termed meta-inflammation — charac-
terized by increased secretion of pro-inflammatory chemokines 
and cytokines, many of which (including TNF-α, IL-1, and IL-6) 
influence lipid metabolism and insulin resistance (123). Besides 
differentially regulating lipid and glucose metabolism, PPARα and 
PPARγ also counter inflammation. However, the anti-inflammato-
ry effects of PPARα and PPARγ activation are likely distinct due to 
differences in tissue and cell type expression.

In WAT, fenofibrate and rosiglitazone reduce the expression 
of several pro-inflammatory mediators, including IL-6 and the 
chemokines CXCL10 and MCP1 (124). PPARγ also inhibits pro- 
inflammatory cytokine production by WAT-resident macrophages 
and modulates macrophage polarization (125). Although innate 
immune cells such as macrophages were initially thought to be the 
main drivers of WAT inflammation and metabolic dysregulation, 
important roles of the adaptive immune system, including WAT 
Tregs, have recently emerged (126). PPARγ acts as a molecular 
orchestrator of WAT Treg accumulation, phenotype, and func-
tion (127, 128). Indeed, the WAT Treg transcriptome alterations in 
obese mice depend on PPARγ phosphorylation by cyclin-depen-
dent kinase 5 (CDK5) (127). In addition, PPARγ expression in WAT 
Tregs is necessary for complete restoration of insulin sensitivity 
in obese mice upon pioglitazone treatment (128). On the other 
hand, activation of CD4+ T cells is accompanied by mTORC1- 
dependent PPARγ induction and enhanced expression of FA 
uptake genes, enabling rapid T cell proliferation and optimal 
immune responses (129). PPARα and PPARγ also modulate the 
inflammatory response in liver and vascular wall (130, 131).

Inhibition of pro-inflammatory gene expression is the main 
process underlying the anti-inflammatory properties of PPARα 
and PPARγ. Several mechanisms have been proposed for tran-
scriptional repression by PPARs that are not mutually exclusive. 
These include direct physical interaction of PPARα or PPARγ with 
several pro-inflammatory TFs including AP-1 and NF-κB (132, 133). 
Repression of inflammation independently of direct PPARα DNA 
binding results in anti-inflammatory and anti-fibrotic effects in a 
mouse model of non-alcoholic steatohepatitis (NASH) (134). In 
addition to this PPRE-independent transrepression mechanism, 
interaction between NF-κB and PPRE-bound PPARα also occurs, 
leading to repression of TNF-α–mediated upregulation of com-
plement C3 gene expression and protein secretion during acute 
inflammation (135). Moreover, simultaneous activation of PPARα 
and GRα increases the repression of NF-κB–driven genes, thereby 
decreasing cytokine production (136). Transcriptional repression 
of pro-inflammatory genes by PPARγ may include ligand-activat-
ed PPARγ sumoylation, which targets the receptor to corepressor 
complexes  assembled at inflammatory gene promoters. This pre-
vents promoter recruitment of the proteasome machinery that 

normally mediates the inflammatory signal–dependent remov-
al of corepressor complexes required for gene activation. As a 
result, these complexes are not cleared from the promoters and 
inflammatory genes are maintained in a repressed state (137). In 
addition to downregulating the expression of pro-inflammatory 
genes, PPARα (138) and PPARγ (139) also suppress inflammation 
by upregulating genes with anti-inflammatory properties, such as 
IL-1Ra, suggesting a possible cooperation between PPAR-depen-
dent transactivation and transrepression to counter inflammation.

The anti-inflammatory properties of PPARα likely contribute 
to the improved lobular inflammation and hepatocellular balloon-
ing observed in NAFLD patients treated with pioglitazone (140) or 
elafibranor (141), a dual PPARα/β(δ) agonist. Pioglitazone reduc-
es hepatic steatosis in NAFLD patients (140), likely due to PPARγ 
activation. The pure PPARγ agonist rosiglitazone also lowers liver 
fat in humans (96), whereas the pure PPARα agonist fenofibrate 
does not (68). Administration of fenofibrate to people with dys-
lipidemia lowers plasma levels of atypical deoxysphingolipids 
(142), which increase upon the transition from simple steatosis to 
NASH (143). Thus, activation of both PPARα and PPARγ appears 
to be beneficial in human NAFLD, although the underlying mech-
anisms clearly differ. Whereas the effects of PPARα agonism on 
inflammation and ballooning are due to direct PPARα activation in 
the liver, the effects of PPARγ on hepatic steatosis are likely medi-
ated by indirect mechanisms such as suppression of FA flux to the 
liver; this is in line with the low expression and absence of PPARγ 
induction in human fatty liver (59).

PPARβ/δ, the clinically enigmatic third PPAR
Selective synthetic PPARβ/δ agonists are not yet clinically avail-
able; however, beneficial effects of PPARβ/δ activation on vari-
ous MetS components have been reported and include both dif-
ferences and similarities to PPARα and PPARγ, such as reduced 
inflammation (144–146).

PPARD variants are associated with cholesterol metabolism 
(147), insulin sensitivity (148), T2D risk (149), and CV risk (40). 
In obese men, administration of the synthetic PPARβ/δ agonist 
GW501516 lowers liver fat content and plasma levels of insulin, 
FAs, triglycerides, and LDL-C (150). These beneficial effects on 
plasma lipids are also observed in overweight patients treated 
with seladelpar (MBX-8025), a novel PPARβ/δ agonist (151). Thus, 
PPARβ/δ agonism combines the metabolic effects of PPARα and 
PPARγ activation on lipid metabolism and glucose homeostasis, 
respectively. Preclinical studies support this conclusion, as the 
administration of GW501516 to overweight monkeys (152) or 
obese rats (153) lowered serum LDL-C and raised HDL-C while 
improving insulin sensitivity.

PPARβ/δ activation protects from diet-induced or genetically 
induced obesity in mice by increasing energy expenditure (154). 
In BAT, activation of PPARβ/δ induces the expression of ther-
mogenic genes, including UCP1, and FAO genes (154). PPARβ/δ 
agonism also promotes FAO in SKM (155), WAT (156), and liver 
(157). PPARβ/δ in brain controls energy expenditure, as neuron- 
specific PPARβ/δ deletion increases susceptibility to diet- 
induced obesity (158). Thus, similar to PPARα, PPARβ/δ activation 
induces energy dissipation. Interestingly, both isotypes crosstalk 
in liver, where PPARβ/δ stimulates the production of the PPARα 



The Journal of Clinical Investigation   R E V I E W  S E R I E S :  N U C L E A R  R E C E P T O R S

1 2 0 8 jci.org   Volume 127   Number 4   April 2017

ligand 16:0/18:0-phosphatidylcholine as well as PPARα expres-
sion and DNA-binding activity, thereby increasing hepatic FAO 
(159). Enhanced FAO upon PPARβ/δ activation contributes to its 
plasma lipid-lowering effects, together with decreased cholesterol 
absorption (160) and increased trans-intestinal cholesterol efflux 
(161). PPARβ/δ also raises HDL-C by increasing hepatic APO-AII 
(162) and PLTP (163) expression.

PPARβ/δ agonism improves insulin sensitivity through sev-
eral mechanisms (Figure 3). In SKM, PPARβ/δ activation favors 
fiber type switching, from type II fast-twitch glycolytic to type I  
slow-twitch oxidative fibers (164), via mechanisms involving 
PGC1α (165) and an estrogen-related receptor γ/microRNA regu-
latory circuit (166), thereby improving glucose handling (167). The 
type I fiber fraction is reduced in people with T2D (168), which may 
contribute to altered glucose homeostasis. Mice with myocyte- 
selective PPARβ/δ deficiency exhibit decreased type I fiber count, 
which precedes the development of a diabetic phenotype (165). 
PPARβ/δ also improves glucose handling and insulin sensitivity in 
the liver. GW501516 treatment suppresses hepatic glucose output 

and enhances glucose disposal by increasing glucose flux through 
the pentose phosphate pathway (169). Liver-restricted PPARβ/δ 
overexpression reduces fasting glucose levels and stimulates 
hepatic glycogen production via upregulation of glucose utiliza-
tion pathways (170). Additionally, stress-induced JNK signaling is 
reduced, contributing to improved hepatic insulin sensitivity (170). 
PPARβ/δ agonism promotes pancreatic β cell mitochondrial func-
tion and ATP production, thereby improving glucose-stimulated 
insulin secretion (171). Furthermore, PPARβ/δ increases intestinal 
production of the incretin glucagon-like peptide 1 (GLP1) (172).

In summary, the mechanisms underlying the metabolic effects 
of PPARβ/δ resemble those of PPARα, which promotes energy 
dissipation, as opposed to PPARγ, which promotes energy stor-
age. PPARβ/δ normalizes plasma lipids through enhanced FAO 
in several tissues, coupled to actions on hepatic apolipoprotein 
metabolism and intestinal cholesterol homeostasis. In contrast 
to PPARα and similar to PPARγ, activation of PPARβ/δ enhances 
insulin sensitivity. The mechanisms underlying PPARβ/δ-mediat-
ed improvement in glucose handling are not similar to PPARγ, but 

Figure 3. PPARβ/δ activation enhances glucose and lipid homeostasis. In SKM, PPARβ/δ activation (effects are indicated in pink) favors fiber type 
switching toward type I oxidative fibers, which have a higher glucose-handling capacity compared with type II fibers. PPARβ/δ also augments FAO in SKM, 
liver, and WAT and enhances hepatic glucose metabolism and pancreatic β cell function. PPARβ/δ activation decreases FAs, triglycerides, and LDL-C and 
increases HDL-C levels in blood. Metabolic effects of PPARβ/δ agonism also take place in brain and gut.



The Journal of Clinical Investigation   R E V I E W  S E R I E S :  N U C L E A R  R E C E P T O R S

1 2 0 9jci.org   Volume 127   Number 4   April 2017

activities in obese mice (177–180); whether this will eventually 
translate to clinical efficacy is unclear. The PPARβ/δ agonist sel-
adelpar (MBX-8025) decreases plasma triglycerides, increases 
HDL-C, and improves insulin sensitivity and liver function in 
overweight people with dyslipidemia (151, 181).

Dual PPAR agonists (which activate two PPAR isotypes) and 
pan-PPAR agonists (which activate all three PPARs) have been 
developed with the goal of combining the beneficial effects of each 
receptor isotype (Table 2). The pan-agonist chiglitazar (CS038) 
improves lipid profiles and insulin sensitivity without increasing 
body weight in animal models of obesity (182). IVA337, a pan- 
agonist that prevents and reverses skin fibrosis (183), is current-
ly entering phase 2 trials for the treatment of NASH. Many dual 
PPARα/γ agonists, termed glitazars, showed improved efficacy 
on glucose and lipid metabolism in clinical trials, although safe-
ty concerns often halted further development (184). Two phase 3 
trials with saroglitazar showed improved glucose and lipid profiles 
in patients with diabetic dyslipidemia compared with pioglitazone 
(185) or placebo (186). In contrast to the other PPARγ-dominant 
glitazars, saroglitazar predominantly activates PPARα with only 
moderate PPARγ agonism, which may explain the lack of typical 

instead involve PPARβ/δ-specific actions on SKM fiber type distri-
bution, hepatic glucose metabolism, and pancreatic islet function.

Current state of PPAR-targeted therapies
Currently used PPAR agonists display weak potencies (PPARα) or 
are associated with important side effects (PPARγ). Optimization 
of therapeutic efficacy may be achieved through the development 
of selective PPAR modulators that retain the beneficial effects of 
PPAR activation while diminishing unwanted side effects (ref. 173 
and Table 1). The selective PPARα agonist pemafibrate (K-877) 
(174) exhibited greater lipid modifying efficacy than fenofibrate 
in a phase 2 trial, with little or no effect on serum creatinine and 
homocysteine levels (175). This compound is undergoing a phase 
3 CV prevention trial, PROMINENT (Pemafibrate to Reduce 
Cardiovascular Outcomes by Reducing Triglycerides in Diabetic 
Patients), in patients with high triglyceride and low HDL-C levels. 
The non-TZD PPARγ modulator INT131, which improves glucose 
tolerance in people with T2D without adverse effects on body 
weight or hemodilution (176), is in phase 2 development. Sever-
al compounds that are not direct PPARγ agonists but that inhibit 
CDK5-mediated PPARγ phosphorylation also exert anti-diabetic 

Table 1. Selective PPAR modulators

Compound Reported effects Status
PPARα agonists
 Pemafibrate (K-877) Improved lipid profile in patients with dyslipidemia (175) Phase 3 CV outcome trial ongoing for treatment of dyslipidemia
 LY518674 Increased cholesterol efflux in patients with MetS (191) Discontinued
PPARγ agonists
 INT131 Improved glucose tolerance in people with T2D (176) Phase 2 trial ongoing for treatment of T2D
PPARβ/δ agonists
 GW501516 Improved lipid profile and insulin sensitivity in overweight  

monkeys (152) and obese rats (153)
Discontinued

 Seladelpar  
  (MBX-8025)

Improved lipid profile and insulin sensitivity in overweight patients with 
dyslipidemia (151, 181)

Phase 2 trial ongoing for treatment of hyperlipidemia

 

Table 2. Dual and pan-PPAR agonists

Compound Reported effects Status
Pan-PPAR agonists
 Chiglitazar Improved lipid profile and insulin resistance in obese mice (182) Phase 3 trial ongoing for treatment of T2D
 IVA337 Improved skin fibrosis in rodents (183) Phase 2 trial ongoing for treatment of NASH
Dual PPARα/γ agonists
 Saroglitazar Improved glucose and lipid profiles in patients with dyslipidemia (185, 186) Marketed in India for dyslipidemia; phase 3 trial ongoing for 

treatment of T2D
 DSP-8658 Improved glucose and lipid profiles in obese mice (192) Discontinued
Dual PPARβ(δ)/γ agonists
 DB959 Improved glucose and lipid profiles in obese mice (193) Discontinued
Dual PPARα/β(δ) agonists
 Elafibranor (GFT505) Improved hepatic steatosis, inflammation, and fibrosis in rodent models of  

NASH (90) and in patients with NASH (141); improved lipid profile and  
insulin sensitivity in patients with dyslipidemia or prediabetes (187)  
and in obese individuals (188)

Phase 3 trial ongoing for treatment of NASH
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fibrate trials, including BIP and FIELD, the proportion of patients 
who received statin therapy was unbalanced between placebo 
and treatment groups. Correction for this nonrandomized statin 
drop-in in the FIELD study estimated that fenofibrate reduces 
relative CV risk by 19% (190).

It has become increasingly clear that PPARα and PPARγ ago-
nism display contrasting metabolic effects with different mech-
anisms of action. Whereas PPARβ/δ agonism is more related to 
PPARα, subtle differences exist (e.g., in regulation of glucose 
homeostasis). These findings are in line with the enhanced met-
abolic actions and improved safety profiles of novel compounds 
such as dual PPARα/β(δ) ligands, which target both lipid (via 
PPARα and PPARβ/δ) and glucose (via PPARβ/δ) abnormalities 
in people with MetS without displaying PPARγ-related adverse 
effects. Altogether, we are convinced that targeting PPARs in 
metabolic disorders remains a valuable and promising approach 
with a future ahead.
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PPARγ side effects. Elafibranor (GFT505), a dual PPARα/β(δ) 
agonist, demonstrated protective effects against hepatic steatosis, 
inflammation, and fibrosis in animal models of NAFLD/NASH 
(90). In phase 2a trials, elafibranor improved lipid and glucose 
profiles in dyslipidemic and prediabetic patients (187) and obese 
individuals (188). The GOLDEN-505 phase 2b study in people 
with NASH showed that elafibranor treatment induces NASH 
resolution without worsening fibrosis in a higher proportion of 
patients compared with placebo (141). The drug was well tolerat-
ed and improved glucose homeostasis and CV risk profile, and has 
since entered phase 3 development for NASH (the RESOLVE-IT 
trial; NCT02704403).

PPARs are still valuable targets  
for metabolic diseases
Over the last decades, market withdrawals and failed drug 
development programs have cast doubts on the clinical value of 
PPAR-activating compounds. However, this issue is not black 
and white. The pure PPARγ agonist rosiglitazone as well as dual 
PPAR agonists with predominant PPARγ-activating properties all 
displayed important adverse effects that led to restricted use or 
halted development. However, most of these side effects were 
either drug specific and hence off-target (189) or related to exces-
sive PPARγ activation. Several fibrate trials, including FIELD and 
ACCORD, failed to meet the primary endpoint of reduced CV 
risk; however, such negative outcomes are likely linked to inap-
propriate patient selection, since subgroup analyzes revealed sig-
nificant CV risk reduction in those patients with marked dyslipid-
emia upon trial enrolment (21). Furthermore, in several of these 
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