
Tumor neoantigens: building a framework for personalized
cancer immunotherapy

Matthew M. Gubin, … , Elaine R. Mardis, Robert D. Schreiber

J Clin Invest. 2015;125(9):3413-3421. https://doi.org/10.1172/JCI80008.

It is now well established that the immune system can recognize developing cancers and that therapeutic manipulation of
immunity can induce tumor regression. The capacity to manifest remarkably durable responses in some patients has
been ascribed in part to T cells that can (a) kill tumor cells directly, (b) orchestrate diverse antitumor immune responses,
(c) manifest long-lasting memory, and (d) display remarkable specificity for tumor-derived proteins. This specificity stems
from fundamental differences between cancer cells and their normal counterparts in that the former develop protein-
altering mutations and undergo epigenetic and genetic alterations, resulting in aberrant protein expression. These events
can result in formation of tumor antigens. The identification of mutated and aberrantly expressed self-tumor antigens has
historically been time consuming and laborious. While mutant antigens are usually expressed in a tumor-specific manner,
aberrantly expressed antigens are often shared between cancers and, therefore, in the past, have been the major focus
of therapeutic cancer vaccines. However, advances in next-generation sequencing and epitope prediction now permit the
rapid identification of mutant tumor neoantigens. This review focuses on a discussion of mutant tumor neoantigens and
their use in personalizing cancer immunotherapies.
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Introduction
The idea that tumors of nonviral origin possess unique, tumor-
specific antigens (TSAs) arose from work reported in the first half 
of the twentieth century by several groups, particularly those led 
by Gross, Foley, Prehn, and Old (1–4). These studies showed that 
when inbred mice bearing carcinogen-induced tumors were cured 
of their cancers by surgical resection, they were immune to sub-
sequent rechallenge with the same tumor cells, but not with other 
distinct tumor cells, even those derived in the same manner from 
different hosts. In the ensuing next quarter century, the roles of 
the MHC proteins in antigen presentation were discovered (5, 6), 
methods were developed to propagate antigen-specific cytolytic 
T lymphocytes (CTL) in culture (7, 8), and it became possible to 
clone and express gene products using molecular biology tech-
niques. Together, these developments provided the elements 
needed for the first molecular identification of TSAs. Using muta-
genized forms of preexisting P815 mastocytoma tumor cells, Boon 
and colleagues isolated a highly immunogenic, nontumorigenic 
tumor cell variant (tum–) and used CTL-based expression clon-
ing approaches to show that a point mutation in a ubiquitously 
expressed protein (P91A) was responsible for the immune rejec-
tion of these tumor cells in naive, syngeneic WT mice (9). Shortly 
thereafter, Hans Schreiber and colleagues showed that tumor-spe-
cific mutant proteins could also function as tumor neoantigens in a 
set of naturally arising, highly immunogenic, primary UV–induced 
mouse tumors (10, 11).

During this time, independent efforts by Knuth and Old and 
the Rosenberg group identified T cells in the peripheral blood and 
tumors of melanoma patients that predominately reacted with 
melanoma cells but not normal cells, suggesting that human can-
cers also possessed tumor antigens whose expression was either 
tumor specific or showed limited expression in normal cells (12, 
13). In 1991, Boon and colleagues used their T cell–based approach 
to clone the first human tumor antigen (MAGEA1) (14), then sub-
sequently cloned a range of different human tumor antigens 
that included, among others, those derived from tumor-specific 
mutant genes, alternatively initiated proteins, normal proteins 
that displayed aberrant quantitative or qualitative expression in 
tumor cells, and proteins expressed only in germ cells and tumor 
cells (15). At about the same time, Sahin et al. used an autologous 
antibody-based cloning approach (SEREX) and also identified dif-
ferent types of human tumor antigens (16). Together, these pio-
neering efforts led to the acknowledgement that the tumor anti-
genome comprised both tumor-specific and tumor-associated 
antigens (TAAs).

Tumor antigen classification
Today we recognize three broad classifications of tumor antigens: 
TSAs, TAAs, and cancer-germline/cancer testis antigens (CTAs) 
(15, 17–19). TSAs are antigens that are not encoded in the normal 
host genome and may represent either oncogenic viral proteins or 
abnormal proteins that arise as a consequence of somatic muta-
tions (i.e., neoantigens). During cancer initiation and progres-
sion, tumor cells acquire protein-altering mutations that are 
either responsible for transformation (driver mutations) or are a 
byproduct of the genomic instability that accompanies cellular 
transformation (passenger mutations) (20–23). Some of these 
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TSAs. Using a combination of next generation sequencing, in sili-
co epitope prediction, and immunological approaches, Sahin and 
colleagues (38) and our group (39) independently identified and 
validated distinct TSAs in murine B16-F10 melanoma tumor cells 
and in highly immunogenic methylcholanthrene-induced (MCA-
induced) sarcoma cells, respectively. Importantly, these studies 
showed that the time frame needed to identify TSAs could be 
shortened to only a few weeks as opposed to the months required 
using conventional antigen-cloning approaches. Moreover, our 
study (39) and an independent study by Dupage and Jacks (40) 
showed that TSAs were also key targets of cancer immunoediting 
— the immunological process that not only protects against cancer 
development, but also sculpts the immunogenicity of cancers that 
form in an immunocompetent individual (41–43).

The following year, this work was extended to human cancers. 
Robbins and Rosenberg showed that exome sequencing could be 
used to identify mutated human TSAs recognized by adoptively 
transferred tumor-reactive T cells (44). Concomitantly, Schumacher  
used a combination of exome sequencing and high-throughput 
MHC tetramer screening to show that checkpoint blockade immu-
notherapy facilitated expansion of preexisting T cells specific for 
tumor neoantigens in a human melanoma patient (45). Checkpoint 
blockade therapy, originally developed by Allison and colleagues, 
is based on the capacity of antibodies to block inhibitory receptors 
(such as cytoxic T lymphocyte–associated protein 4 [CTLA-4]) 
on T cells or deplete inhibitory receptor–bearing T cells, thereby 
unleashing suppressed T cell–dependent antitumor effector func-
tions in tumor-bearing hosts (46–48). The capacity of epitope pre-
diction algorithms to identify human TSAs was further demon-
strated in both prospective and retrospective analyses performed 
by Fritsch, Hacohen, and Wu (49, 50), Schumacher and colleagues 
(51), and Nelson et al. (52). Together, the mouse and human studies 
suggested that it was indeed possible to use genomics and bioin-
formatics approaches to rapidly identify mutant proteins expressed 
exclusively in cancer cells that function as tumor neoantigens.

Identifying tumor-specific mutations and 
predicting their capacity to function as TSAs
Whereas these initial studies revealed the power of combining 
genomics, bioinformatics, and immunological approaches to iden-
tify mutant TSAs, additional refinements have been made over the 
last few years that further improved the accuracy of the process.

Next generation sequencing. Advances in sequencing technol-
ogy have transformed our ability to decode cancer-specific muta-
tions by coupling the sequencing reaction with detection of nucle-
otide incorporation events for hundreds of millions of genomic 
fragments in the same instrument run (53). In particular, tumor-
specific or “somatic” mutations can be identified using massively 
parallel sequencing (MPS) (17) approaches to compare DNA iso-
lated from tumor versus normal sources. Similar to DNA-based 
assays using MPS, RNA from tumors can be analyzed by conver-
sion to cDNA and construction of a library suitable for sequenc-
ing. Since the genome is large (3 billion base pairs) and its analysis 
complex, the advent of hybrid capture technology has permitted 
investigators to focus only on the 1% of the genome that compris-
es the coding exons of known genes, (i.e., the “exome”) (54–56). 
Here, probes designed to bind the exon sequences of annotated 

alterations may result in expression of mutant proteins that are 
perceived as foreign proteins by the immune system. This class of 
antigens is likely to be less susceptible to mechanisms of immu-
nological tolerance and therefore may represent more visible tar-
gets for immune-mediated tumor control (19, 24). TAAs include 
proteins encoded in the normal genome and may be either normal 
differentiation antigens or aberrantly expressed normal proteins. 
Overexpressed normal proteins that possess growth/survival-
promoting functions, such as Wilms tumor 1 (WT1) (25) or Her2/
neu (26), represent TAAs that directly participate in the oncogenic 
process. Posttranslational modifications of proteins such as phos-
phorylation may also lead to formation of TAAs (27, 28). Because 
TAAs are normal proteins, their antigenicity depends on abnor-
mal expression levels or context to circumvent naturally occurring 
mechanisms of immunological tolerance (29, 30). Along these 
lines, TAAs usually have lower T cell receptor (TCR) affinity com-
pared with TSAs or foreign antigens (31). The third category com-
prises CTAs, which are normally expressed in testis, fetal ovaries, 
and trophoblasts, but can also be expressed in cancer cells (17). 
Because they are encoded in the normal genome but display high-
ly restricted tissue expression, CTAs have received considerable 
attention as attractive targets for immunotherapy (32).

Paving the way for TSA-based cancer 
immunotherapy
In 2005, two important human studies stimulated increased 
interest in tumor neoantigens as therapeutic targets for cancer 
immunotherapy. First, using expression-cloning approaches,  
T. Wölfel et al. showed that the naturally occurring antitumor T cell 
response in a melanoma patient was directed toward neoantigens 
formed by somatic point mutations in five distinct genes and that 
T cell responses against these TSAs prevailed over responses to 
TAAs (33). Second, Rosenberg and Robbins showed that ex vivo–
expanded tumor-infiltrating lymphocytes (TILs), when adoptively 
transferred into a melanoma patient who subsequently underwent 
a complete tumor regression, contained T cells that were specif-
ic for two mutant tumor antigens (34). T cells specific for these 
neoantigens persisted in the blood and tumor of the patient after 
adoptive transfer. Together, these data provided support for the 
concept that T cells recognizing tumor neoantigens could indeed 
provide substantial therapeutic benefit to human cancer patients.

These results came at a time when the majority of efforts in 
the field were focused on identifying TAAs and CTAs for use in 
cancer immunotherapy. During this period, limited effort was 
expended on TSAs because their identification was so difficult 
and represented a case of too much effort for too little gain for 
too few individuals. However, by 2008, cancer genome sequenc-
ing had clearly established that all cancers express somatic muta-
tions (35, 36). These observations led Allison and Vogelstein to 
conduct in silico analyses of exome-sequencing data from breast 
and colorectal cancers, where they found several mutations that 
were predicted to form tumor-specific mutant antigens for CD8+ T 
cells (37), but it would take four years before experimental support 
could be obtained to corroborate their computational predictions.

In 2012, two independent reports provided the first unequivo-
cal evidence that genomics and bioinformatics approaches could 
be used to identify tumor-specific mutant proteins that function as 
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some (59) and the resulting 8–11 amino acid peptides transported 
into the ER by the transporter associated with antigen processing 
(TAP) (60), where they are loaded onto newly synthesized class I 
molecules and the stabilized peptide–MHCI (p–MHCI) complexes 
are transported to the cell surface. MHCI alleles are remarkably 
polymorphic, and the number of potential self and foreign pep-
tides processed by normal, infected, or transformed cells is very 
large (61). There are nearly 2,500 human MHCI allelic sequences 
and, because human cells can express as many as six distinct MHCI 
alleles, the capacity to accurately predict which tumor-derived 
mutant peptide will bind a particular MHCI is challenging.

Multiple tools exist to predict peptide binding to MHCI. A 
comprehensive list of prediction tools is available (http://can-
cerimmunity.org/resources/webtools/), and the bioinformatics 
and biochemical aspects of these programs have been extensively 
reviewed elsewhere (62–64). Whereas SYFPEITHI (65), Rankpep 
(66), and BIMAS (67) were the first such tools to be developed, 
more accurate prediction algorithms have now come on line, and 
some have been incorporated into the Immune Epitope Database 
and Analysis Resource (IEDB) (68). A subset of these algorithms 
predicts peptide binding to different MHCI variants based on 
artificial neural networks (ANN), providing predicted IC50 as an 
output (69). In this category, NetMHC (70) is one of the most 
commonly used and best validated prediction programs (71, 72). 
Neural network–based approaches depend on the quality and size 
of the training set and therefore are likely to be more accurate for 
the more common alleles. A modified form of NetMHC, NetM-
HCpan (73, 74), expands the training set by including data from 
other species, leading to improved accuracy for rare MHC alleles. 
SMM (75) and SMMPMBEC (76) are examples of a second sub-
set of prediction algorithms that use position-weight matrices to 
describe statistical preferences from p–MHCI binding data. This 
approach suppresses noise caused by both experimental error and 
a limited number of data points present in the training set.

Neoepitope prioritization. For identifying tumor-derived 
mutant epitopes, most studies use predicted p–MHCI binding 
affinity as the primary criterion for generating an initial prioritized 
list of candidate epitopes. Most of the reported studies indicate 
that natural immune responses to tumor neoantigens are selective-
ly directed to epitopes within a group predicted to have the stron-
gest MHCI binding affinities (44, 77, 78). Peptide/MHCI binding 
is influenced by two additional parameters — epitope abundance 
and antigen processing (i.e., protein degradation and peptide 
transport). Although mass spectrometry could potentially provide 
information on epitope abundance and is rapidly becoming more 
sensitive, the current sensitivity and requirement for large num-
bers of tumor cells remain as important impediments in employ-
ing this approach to identifying the entire peptidome expressed on 
MHCI (79). Therefore, epitope abundance is currently estimated 
indirectly by quantitating RNA expression levels. In one approach, 
mutations defined by tumor-to-normal DNA comparisons are 
subjected to bioinformatic analysis to predict their immunogenic-
ity and the levels of candidate immune stimulatory peptides are 
estimated by RNA-Seq. RNA evaluation provides information 
regarding (a) whether the variant is expressed in the RNA and 
(b) the mutant allele’s expression level relative to other genes. In 
a second approach, cDNA capture is performed from tumor RNA 

genes are synthesized, biotinylated, and hybridized in solu-
tion with a fragmented whole genome library. The probe-bound 
library fragments are subsequently captured and isolated using 
streptavidin-coated magnetic beads. After release from the beads 
by denaturation, the library fragments are amplified, quantitated, 
and sequenced.

Exome-capture can be used in a clinical setting, but challeng-
es include (a) obtaining information in a clinically relevant time 
frame, (b) the small amounts of DNA/RNA available from a core 
biopsy procedure, (c) tissue preservation in formalin and paraffin 
(formalin-fixed paraffin embedded [FFPE]), which promotes the 
degradation of nucleic acids via backbone crosslinking, and (d) 
data interpretation. Recent technical innovations have reduced 
the time for this approach from approximately one week to around 
two hours for hybrid capture. It is now feasible to generate exome-
capture data and produce a list of somatic mutations in about three 
days. Hybrid capture also enhances the sequencing data quality 
obtained from tumor RNA (cDNA) sequencing, especially for low 
yield and/or FFPE-derived samples (57).

Detecting somatic mutations. Mutation calling from exome-
capture sequencing data is achieved by aligning sequence reads 
to reference genomes, which serve as the keystone for analyzing 
the short read lengths (~100 bp) produced by MPS platforms. 
Once reads are aligned to the genome, variants are identified 
using several algorithms to interpret different types of mutations, 
including point mutations (or single nucleotide variants [SNVs]) 
and focused insertion or deletion variants (indels). Tumor variant 
calls are then compared with data from a matched normal tissue 
DNA obtained using a similar capture reagent in order to iden-
tify tumor-unique (“somatic”) mutations. Subsequent annotation 
steps convert variations in nucleic acid sequence to changes in 
amino acid sequence, thereby providing the initial data required 
to identify and rank order tumor neoantigens.

One aspect of this process that needs further work is the abili-
ty to predict neoantigens arising from more “extreme” mutations. 
In principle, variants that add or delete an amino acid or truncate 
or extend open reading frames or fusion genes arising from trans-
locations or inversions could be a source of highly antigenic novel 
epitopes; however, indel variants have, in the past, been difficult 
to detect with high certainty, even when algorithms are employed 
that are specifically tuned to detect this type of mutation. Howev-
er, recent advances now permit the identification of some indels 
with a fairly high degree of certainty, although indels contain-
ing highly repetitive regions remain a difficulty. Structural vari-
ants also are difficult to identify, especially from exome-capture 
data, and hence are not likely to be easily detected unless RNA 
sequencing (RNA-Seq) data can be evaluated for fusion tran-
scripts (which has a correlative high false-positive rate). In all cas-
es, the use of RNA data from cDNA capture sequencing (cDNA 
Cap-Seq) or RNA-Seq to identify and/or confirm such variants is 
critically important.

Predicting tumor neoepitopes. Currently, the most useful epitope 
prediction algorithms are those that focus on binding of peptides 
to MHC class I (MHCI) molecules. In both humans and mice, the 
MHCI antigen presentation pathway is responsible for present-
ing peptides derived from endogenous cell-intrinsic proteins to 
CD8+ CTL (58). Endogenous proteins are processed by the protea-
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and compared with normal DNA to provide a list of mutated pep-
tides. Due to the error rate of reverse transcriptase and sources 
of false positivity in variant calling in RNA versus DNA, the pre-
dicted mutations are refined further by applying a series of filters 
to remove known sources of false-positive variants (e.g., low cov-
erage in tumor or normal, or low numbers of variant-containing 
reads) and to eliminate nonexpressed genes and/or alleles. A 
final filter eliminates genes with low expression that have a frag-
ment per kilobase of million mapped reads (FPKM) of less than 
one. Downstream steps of immunogenicity prediction can then 
be made for this filtered set of mutant peptides. Additional algo-
rithms exist to refine epitope predictions including those focused 
on defining proteasomal cleavage (i.e., NetChop) (80) and/or 
TAP transport (i.e., NetCTL and NetCTLpan) (81, 82). However, 
because the latter are currently not as reliable as the MHC-affinity 
prediction algorithms, they should be used with caution.

In contrast to predicting MHCI epitopes, the accuracy of pre-
dicting MHCII epitopes has been problematic. Whereas the MHCI 
binding groove is closed at both ends, MHCII has a peptide-bind-
ing groove that is open, leading to considerable variation in both 
the length of peptides that can bind to MHCII and the location of 
the binding core. Multiple MHCII binding prediction algorithms 
are available (such as TEPITOPE, ref. 83; netMHCII, ref. 84; and 
SMM-align, ref. 85); however, they have not been extensively used 
in the past to identify tumor-specific mutant MHCII epitopes.

Recent preclinical studies illustrating the use of 
personalized TSAs in immunotherapy
MHCI neoepitopes. Two recent preclinical studies demonstrated 
the feasibility of developing personalized neoantigen-based can-
cer immunotherapies. Using a combination of mass spectrom-
etry, next generation sequencing, and bioinformatics approaches, 
Yadav, Lill, Delamarre, and colleagues identified seven mutant 
neoepitopes bound to MHCI expressed on MC38 mouse colon 
adenocarcinoma cells (78). Two of the stronger H-2Db–binding epi-
topes, derived from point mutations of Reps1 and Adpgk, induced 
antigen-specific CD8+ T cell responses in naive WT syngeneic 
mice when administered together with polyinosinic:polycytidylic 
acid (poly I:C) and agonistic anti-CD40. One H-2Kb epitope, 
derived from a point mutation of Dpagt1, also induced a weak T 
cell response. Therapeutic vaccines comprising synthetic long 
peptides (SLP) containing the three positive epitopes provided 
mice bearing established MC38 tumors with a significant degree 
of therapeutic protection.

An independent study published concomitantly by our group 
took the approach of determining the tumor antigen specificities of 
CD8+ T cells responsible for rejecting tumors in mice undergoing 

Figure 1. Genomics-based identification of neoepitopes. Tumor 
cells and normal tissue were subjected to cDNA Cap-Seq to identify 
expressed, nonsynonymous somatic mutations. Corresponding mutant 
epitopes were then analyzed in silico for MHCI binding. Filters were 
applied for antigen processing, neoepitopes, and deprioritization of 
hypothetical proteins. Peptides corresponding to predicted epitopes 
were then synthesized and used to identify mutant neoantigen–specific 
T cells in freshly explanted TIL using MHC multimer–based screens or 
cytokine induction by peptide stimulation.
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neoepitope binding to MHCI alleles while 
discounting mutations that affect TCR 
binding, which identified unique tumor 
neoepitopes that provided protection in a 
prophylactic vaccine setting (86). Intrigu-
ingly, many of these displayed MHCI 
binding affinities that were orders of mag-
nitude weaker than other validated MHCI–
restricted epitopes. It remains unclear how 
such weak epitopes could function in a 
therapeutic setting, and additional work is 
needed to explore this issue.

MHCII neoepitopes. In many mouse 
tumor models, spontaneous or therapeuti-
cally induced tumor rejection is inhibited 
following depletion of either CD4+ or CD8+ 
T cells (39, 40, 77). Moreover, the presence 
of tumor-specific IgG antibodies in cancer 
patients and tumor-bearing mice implies 
that CD4+ T cells play important roles in 

the antitumor response (87). Using humanized MHC transgenic 
mice, Platten and colleagues demonstrated that SLP vaccines con-
taining a mutant MHCII epitope from isocitrate dehydrogenase 1  
(IDH1; a previously identified mutation in many human glio-
blastoma patients) controlled outgrowth of mouse tumors engi-
neered to express mutant human IDH1 (88). Furthermore, using 
exome sequencing along with a high-throughput MHCII epit-
ope screening method that did not require prediction of MHCII 
epitopes, Schumacher and colleagues identified and validated 
mutant MHCII–restricted neoepitopes in melanomas from several 
patients (89). They further showed that, whereas MHCII epitopes 
were identified in 4 of 5 different human melanomas, they repre-
sented only 0.5% of the melanoma mutanome, thus translating 
into only one to two MHCII epitopes per tumor.

In a more recent study, the Sahin group vaccinated naive WT 
mice with synthetic 27 mer peptides containing putative MHCI 
epitopes they had identified in a previous study from B16-F10 
melanoma cells and found that nearly 30% of these peptides 
induced both strong T cell responses and strong antitumor activi-
ty when injected into tumor-bearing mice (90). Surprisingly, 95% 
of the epitope-specific lymphocytes induced by vaccination were 
CD4+ rather than CD8+ T cells. A predominance of MHCII neo-
epitopes was also observed for CT26 (a colorectal adenocarcino-
ma) and 4T1 (a breast adenocarcinoma) (89). In the case of CT26, 
the neoepitopes were selected using bioinformatics approaches 
based exclusively on the use of expression level predictions and 
MHCII–binding capacity. RNA-based vaccines encoding mutant 
MHCII epitopes induced complete rejection of established, 
aggressively growing tumors. By applying the same predictive 
algorithm to human cancers, the investigators observed a high 
abundance of MHCII neoepitopes. The number of MHCII epi-
topes per tumor cell appears to be vastly different between the 
Schumacher and Sahin studies (89, 90). At least in part, this dif-
ference could reflect the methods used to reveal the epitopes 
(checkpoint blockade versus active vaccination, respectively), but 
could also reflect the use of paired tumor and normal samples in 
the former study versus use of a half-century old tumor where no 

checkpoint blockade immunotherapy (77). In this study, we used 
an edited mouse MCA sarcoma line (T3) that formed progressively 
growing tumors in naive syngeneic WT mice, which were rejected 
upon treatment with mAbs specific for two different immune check-
points — CTLA-4 and programmed death-1 (PD-1) (Figure 1). As 
assessed by cDNA–Cap-Seq and a recent refinement to calling muta-
tions, T3 expressed approximately 2,200 nonsynonymous point 
mutations. Putative epitopes were predicted using three MHCI bind-
ing algorithms (SMM, NetMHC, and NetMHCpan) and calculating 
the median binding affinities for each epitope. Additionally, we 
applied filters for proteasomal processing (NetChop), neoepitopes 
(i.e., where the mutant epitope bound to MHCI in a manner equal 
or greater to WT sequence), and deprioritization of hypothetical pro-
teins. Using this approach, two MHCI H-2Kb–restricted tumor neoan-
tigens were identified: point mutations in α-1,3-glucosyltransferase 
(Alg8) and laminin α subunit 4 (Lama4). These predictions were 
validated by the following observations. First, primary TILs from 
T3 tumors were specifically stained by H-2Kb tetramers carrying 
either ALG8 or LAMA4 epitopes (but not other predicted epitopes), 
accumulated in tumors in a time-dependent manner, and produced 
IFN-γ and/or TNF-α when stimulated with irradiated splenocytes 
pulsed with either ALG8 or LAMA4 (but not other predicted epi-
topes). Second, the same two mutant epitopes were recognized by 
cloned T cells from mice that had rejected T3 sarcomas following 
anti–PD-1 treatment. Third, ALG8 and LAMA4 were detected by 
mass spectrometry bound to H-2Kb on T3 sarcoma cells. Fourth, 
ALG8 or LAMA4 peptide vaccines induced T cell responses in naive 
syngeneic WT mice. Fifth, vaccines comprising ALG8/LAMA4 SLPs 
plus poly I:C prophylactically protected mice against subsequent 
challenge with T3 tumor cells and therapeutically induced rejection 
in mice bearing established T3 tumors. Importantly, the degree of 
therapeutic protection by the combined neoantigen SLP vaccine was 
comparable to that afforded by checkpoint blockade therapy (Figure 
2). Together, these studies revealed the therapeutic potential of TSA-
based personalized cancer immunotherapy.

Srivastava and colleagues concomitantly proposed an alterna-
tive prediction method based exclusively on the enhancement of 

Figure 2. Mutant neoantigen–specific peptide vaccines induce therapeutic effects comparable to 
those of checkpoint blockade therapy. Kaplan-Meier survival curves of tumor-bearing mice therapeuti-
cally vaccinated with a vaccine comprising poly I:C plus either ALG8 plus LAMA4 SLP, control SLP (HPV 
peptide), or buffer (A) or therapeutically treated with mAbs to CTLA-4 and/or PD-1 immune checkpoints 
(B). Adapted with permission from Nature (ref. 77; Figure 1A and Figure 2, D and E) 
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corresponding normal tissue of similar age was available. Never-
theless, the two studies support the conclusion that T cell–depen-
dent immune control of cancer is dependent on the presence of 
both mutant MHCII and mutant MHCI tumor neoepitopes.

Therapeutic use of tumor-specific mutant 
antigens in human cancer
In the past year, the first examples of TSA-based personalized 
cancer immunotherapies have begun to emerge. In 2014, the 
Rosenberg group used a novel TSA-based personalized adop-
tive cell therapy (ACT) method to treat a patient with metastatic 
cholangiocarcinoma (91). Specifically, 26 nonsynonymous muta-

tions were identified in a lung metastasis from the patient by 
whole-exome sequencing, and candidate minigene constructs for 
each mutation were transfected into patient-derived APCs. TILs 
from lung metastases were screened for reactivity with trans-
fected APCs, leading to identification of a point mutant ERBB2-
interacting protein as a neoantigen recognized by CD4+ T cells 
within the TIL population. TILs enriched to 25% for reactivity 
to the neoantigen were then infused back into the patient, who 
showed a partial response to the first ACT treatment and showed 
improved responses to subsequent treatments with TIL prepara-
tions enriched to 95% of neoantigen-specific CD4+ T cells. These 
results not only demonstrated a therapeutic advantage to person-
alizing ACT therapy, but also specifically documented the thera-
peutic efficacy of neoantigen-specific CD4+ T cells.

Using more classical vaccine approaches, Carreno et al. recently 
showed that tumor neoantigens, when administered as a vaccine to 
three melanoma patients, can enhance both preexisting anti-tumor 
T cell responses and induce responses to neoepitopes that were 
undetectable prior to vaccination (92). Thus, these studies support 
the preclinical work that preceded them and show that vaccines 
comprising IFN-γ/CD40 ligand–activated dendritic cells pulsed 
with tumor neoepitopes represent yet another method to deliver per-
sonalized cancer vaccines to tumor-bearing individuals (Figure 3).

The idea that the neoantigen landscape might predict clinical 
responses to checkpoint blockade therapy was proposed in recent 
work from Snyder, Wolchok, and Chan, where a mutational gene 
signature was inferred that correlated with long-term clinical ben-
efit of anti–CTLA-4 (ipilimumab) therapy (93). While the muta-
tional load alone was found to partially predict long-term clinical 
benefit, specific four–amino acid motifs within the NetMHC-
predicted neoepitopes were claimed to be even better predictors 
of clinical response. However, this claim has been recently chal-
lenged because other investigators have not been able to find such 
motifs in validated neoepitopes. This same group together with 
the Schumacher group subsequently demonstrated that higher 
mutational burden was also associated with improved responses 
and progression-free survival in patients with non–small cell lung 
cancer treated with anti–PD-1 (pembrolizumab) (94). Response 
was also correlated with mutations in genes encoding components 
in the DNA-repair pathway that resulted in a higher number of pre-
dicted neoantigens. For the one patient in the cohort whose tumor 
neoantigen was defined, neoantigen-specific T cell responses 
paralleled tumor regression, implicating a link between the T cell 
responses and the antitumor effects of anti–PD-1 therapy. A recent 
report by Chowell et al. used bioinformatics approaches to sup-
port an argument that the hydrophobicity of TCR contact residues 

Figure 3. Neoantigen-specific T cell therapy. Patient tumor cells and normal 
tissue are subjected to whole-exome sequencing and RNA-Seq to identify 
expressed nonsynonymous somatic mutations. These mutations are pipe-
lined into MHCI epitope prediction algorithms to prioritize a list of candidate 
antigens and/or may be expressed as minigenes used for the identification 
and expansion of mutant neoantigen–specific autologous T cells isolated 
from blood or tumor of the same patient. Ex vivo–expanded T cells are then 
infused back into the cancer patient. Alternatively, expressed mutations 
predicted to form neoantigens by MHCI epitope–binding algorithms are 
confirmed and then used to generate neoantigen vaccines.
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form a hallmark of immunogenic epitopes (95). Thus it is clear 
that more work is needed to clarify whether there are amino acid 
motifs that play important roles in determining neoantigenicity.

Concluding remarks
The last decade has seen an explosive growth in our appreciation 
of the role of immunity in cancer. We now know that the immune 
system recognizes, shapes, and/or promotes cancer develop-
ment or outgrowth (22, 41–43, 96, 97). Based on our enhanced 
insight into immune system/cancer interactions, new immu-
nologic approaches to treating cancer have been developed, 
often leading to durable clinical responses in a subset of cancer 
patients (47, 98–100).

Two particular characteristics have brought cancer immuno-
therapy to the forefront of modern molecular medicine (101). First, 
this therapy can be staged such that it induces complete responses 
or stable disease with less collateral damage than conventional 
chemotherapy or radiation therapy. Second, because the immune 
response can continuously evolve new specificities, cancer immu-
notherapy has the capacity to respond reactively to genetically 
unstable, continuously changing cancer cell target populations. 
However, current cancer immunotherapies still display inherent 
toxicities because they function within the narrow therapeutic 
space between tumor immunity and autoimmunity and induce 
responses only in a subset of patients. The use of TSAs as the basis 
for personalized cancer immunotherapy offers the potential to 
make the therapy more specific, more effective, and safer com-
pared with the cancer immunotherapies that we have available 
today. However, key questions remain to be answered. Although 
we have achieved a level of competency in identifying point muta-
tions and indels that can form MHCI epitopes, there remain sev-
eral other potential tumor neoantigens (such as products of gene 
fusions, proteins arising from mistakes in translation, or mutant 
proteins that form MHCII antigens) that are currently not easy to 
predict with bioinformatics tools. We need to resolve the important 
questions of whether tumor-specific mutant antigens (or the close-
ly related group of shared driver neoantigens that could reduce the 
chances of escape variant formation) really offer unique oppor-
tunities to target tumor cells compared with shared, nonmutated 
TAAs. Furthermore, we need to determine what minimum num-

ber of neoepitopes must be employed to reduce the likelihood of 
formation of antigen-loss variants. Finally, we need to experimen-
tally establish that therapeutically targeting tumor neoantigens 
does not lead to unanticipated autoimmune consequences. Even 
after we resolve these issues, we still need to determine how best 
to use this information therapeutically. Is it through defining the 
best types of personalized cancer vaccines, individualized adoptive 
cell therapies, some combination of these together with checkpoint 
blockade immunotherapy, or even combinations of immunologic 
and standard cancer immunotherapies? Strategies targeting dif-
ferent aspects of the “cancer-immunity cycle” (102) (i.e., priming 
and/or effector immunity) with checkpoint blockade may be help-
ful in contextualizing the role of targeting TSAs within the multi-
step process of effective antitumor immunity. Will the methods 
that are ultimately used need to be employed in a manner that is 
based on the type of cancer being treated? We envisage that these 
types of questions will be answered in the next decade of cancer 
immunology, genomics, and immunotherapy research. It is clear 
that we now stand at an important crossroads of opportunities to 
enhance our ability to use the immune system to make cancer a 
controllable and, in some cases, curable disease. We predict that 
the capacity to personalize cancer immunotherapy will contribute 
significantly to this important endeavor.
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