Supplementary Information

Figure S1. Characterization of TAK1 expression.

- (A) Sections through the cortical bone of $Tak1^{osx}$ and control mice showing TAK1 expression in osteoblasts.
- (B) Sections through the chondroepiphysis of $Takl^{osx}$ and control mice showing TAK1 expression in hypertrophic chondrocytes.
- (C) Kinetics of TAK1 expression in human mesenchymal stem cells under osteoblast differentiating conditions.

Figure S2. Characterization of Tak1^{osx} mice

- (A)Alizarin red-stained skulls of $Tak1^{osx}$ and a littermate control demonstrating reduced calvarial mineralization in p20 mice.
- (B) X-rays of $Takl^{fl/+}$, $Takl^{+/osx}$, and $Takl^{osx}$ mice at p20.
- (C) Hematoxlin and eosin stained coronal section of the tibia in 3 week old $Tak1^{osx}$ and control mice. $Tak1^{osx}$ mice display osteopenia and a delay in the formation of the secondary center of ossification.
- (D) In situ hybridization for the indicated probes from Tak^{fl/fl} and Tak1^{osx} mice. Images are high magnificiation versions of Figure 2B. The signal is viewed as black over a hemotoxlin and eosin-stained background. Original magnification 100X. Osx was visualized by darkfield microscopy.

Figure S3. Analysis of osteoclast differentiation and activity in *Tak1*^{osx} mice.

- (A) Tartrate Resistant Acid Phosphatase (TRAP) staining of trabecular bone below the growth plate of the tibia in 3 week old $Tak1^{osx}$ and $Tak1^{+/osx}$ mice. TRAPpositive osteoclasts stain a magenta color.
- (B,C) Calvaria and tibias were isolated from female *Tak1*^{*fl/fl*} and *Tak1*^{*osx*} mice, RNA-extracted, and RNA levels of Rank ligand (Rankl) and Opg genes were analyzed by quantitative PCR. Values are mean + SD.
- (D) Fasting serum collagen I C-terminal telopeptide (CTX) levels, a reflection of osteoclast activity in vivo, were determined from 3 week old female *Tak1^{osx}* mice by quantitative ELISA. *, p=.001; **, p=.007, both by an unpaired Student's ttest.
- Figure S4. Control infection of wt CalvOb with Lentiviral cre.
 - (A) Primary WT CalvOb were infected with vector or cre lentivirus, cultured under differentiation conditions, and incubated with Alamar Blue solution. Cell viability was analyzed by colorometric assay. Values are mean + standard deviation (SD).
 - (B) WT CalvOb infected by vector or cre lentivirus were cultured for 6 days under differentiation conditions and ALP activity was analyzed by colorometric assay. Values are mean + SD.
 - (C) RNA levels of the indicated genes were analyzed by quantitative PCR on WT CalvOb infected by vector or cre lentivirus. Values are mean + SD.
 - (D) WT CalvOb infected by vector or cre lentivirus were serum starved for 12 hours before BMP2/7 stimulation for the indicated times, and then immunoblotted with antibodies specific to phospho-SMAD1/5/8 and phospho-p38. Immunoblotting

analysis with antibodies specific to GAPDH and TAK1 was performed as a control.

Figure S5. Various signaling pathways in TAK1-deficient osteoblasts.

- (A) Quantitative PCR analysis for BMP-responsive gene induction. $Tak I^{n/n}$ CalvOb infected by vector or cre lentivirus were treated with or without BMP2/7 for 6 hours and total RNA was extracted for quantitative PCR analysis. Values are mean + SD.
- (B) Primary $Takl^{n/n}$ CalvOb (upper) and immortalized $Takl^{n/n}$ CalvOb (lower) were infected by vector or cre lentivirus. 2 day after transduction, cells were transfected with 3TP-lux and *Renilla* luciferase vectors, cultured under differentiation condition, and then serum starved for 12 hours before treatment with TGF β . Results are expressed as relative luciferase activity normalized by *Renilla* control. Values are mean + SD.
- (C) $Tak I^{fl/fl}$ CalvOb infected by vector or cre lentivirus were serum starved for 12 hours before TGF β stimulation at different timepoints, and then immunoblotted with the indicated antibodies. Immunoblotting with antibodies specific to GAPDH or HSP90 was performed as a control.
- (D) Tak1^{fl/fl} CalvOb infected by vector or cre lentivirus were transfected with Top flash-luc and *Renilla* luciferase vectors together with vector or xWNT8/Fz5 fusion protein, and cultured under differentiation condition. Results are expressed as relative luciferase activity normalized to *Renilla* activity. Values are mean + SD.

- (E) Immunohistochemistry for β -catenin showing equivalent expression and localization in a calvarial osteogenic front along the sagittal suture in *Tak1^{osx}* and *Tak1^{fl/fl}* control mice.
- (F) RNA levels of Sprouty2 and Dusp6 were analyzed by quantitative PCR on $TakI^{fl/fl}$ CalvOb infected by vector or cre lentivirus. Values are mean + SD (left). Alternatively, cells were serum starved for 12 hours before treatment with FGF2, and immunoblotted with anti-phospho-ERK1/2 antibody (right). Immunoblotting with antibodies specific to HSP90 and TAK1 was performed as a control.

Figure S6. Expression of MKK3, MKK6, and p38 isoforms.

- (A)Quantitative PCR analysis for the indicated gene expression in various tissues. hea; heart, kid; kidney, cor; cortex, mus; muscle, cer; cerebrum.
- (B) Quantitative PCR analysis for the indicated gene expression in calvaruim and tibia from $Tak l^{fl/fl}$ and $Tak l^{osx}$ mice.
- (C) Primary wt CalvOb were cultured under differentiation conditions and total RNAs were extracted at day 0, 10, and 20 for quantitative PCR analysis.

Figure S7. Characterization of $Mkk3^{-/-}Mkk6^{+/-}$ and $p38\beta^{-/-}$ mice.

(A, B) Hematoxlin and eosin stained coronal section of the tibias. 4 week old wild type, $Mkk3^{-/-}Mkk6^{+/-}$, $Mkk3^{-/-}$ (A) and $p38\beta^{-/-}$ (B) mice display osteopenia and a delay in the mineralization of the secondary center of ossification.

- (C) TRAP stain of the trabecular bone below the growth plate of the tibia in 4 week old wild type, *Mkk3^{-/-}Mkk6^{+/-}* and *Mkk3^{-/-}* mice. TRAP-positive osteoclasts stain a magenta color.
- (D) Fasting CTX levels were determined from 5 week old female WT, Mkk3^{-/-}, and Mkk3^{-/-}Mkk6^{+/-} mice by quantitative ELISA. *, p=.02 by an unpaired Student's ttest.
- (E) TRAP stain of the trabecular bone below the growth plate of the tibia in 4 week old wild type and $p38\beta^{-/-}$ mice.

Figure S8. Skeletal phenotype of $Mkk6^{-/-}$ mice.

- (A) Femurs from 4-week old female $Mkk6^{-/-}$ mice and background, age, and sex matched controls were analyzed by μ CT.
- (B) 3-dimensional reconstructions of μ CT scans of cortical bone (top) and trabecular bone (middle) from femurs from 4 week old *Mkk6^{-/-}* mice. Also, skulls of p4 mice were scanned and analyzed for the degree of calvarial mineralization (bottom).

Figure S9. Runx2 activation by p38 MAP kinases

- (A) Tak1^{fl/osx} and Tak1^{osx} CalvOb were infected with Flag-tagged MKK6s (glu or K82A) expressing lentiviruses, and the expression was analyzed by immunoblotting with anti-Flag antibody.
- (B) Tak1^{fl/fl} CalvOb infected by vector or cre lentivirus were serum starved for 12 hours before BMP2/7 stimulation, and then immunoblotted with anti-phospho-

p38 antibody. Myc-Runx2 expression was performed by immunoblotting with anti-Myc antibody.

- (C) C2H10T1/2 cells were transfected with OSE2-luc and *Renilla* luciferase vectors together with different concentration of p38α in the absence or the presence of Runx2.
- (D) HEK293 cells were transfected with Myc-Runx2, Flag-p38α, and Flag-MKK6glu or Flag-MKK6-K82A as indicated and immunoprecipitated with anti-flag antibody. Myc-Runx2 mobility was analyzed by immunoblotting with an anti-Myc antibody.
- (E) Primary *Tak1^{n/n}* CalvOb were infected with either vector or cre lentivirus together with Myc-Runx2 expressing lentivirus and cultured under differentiation conditions. Nuclear extracts were prepared and Runx2 DNA binding activity to OSE2 DNA was analyzed by EMSA (top). As a control, free probe (FP) was run without the addition of nuclear extracts. Expression of Myc-Runx2 protein was analyzed by immunoblotting with anti-Myc antibody (bottom).
- (F) HEK293 cells were transfected with HA-CBP, Myc-Runx2, MKK6-glu and p38α as indicated. Cellular lysates were then immunoprecipitated with anti-HA antibody and then immunoblotted with antibodies specific to Myc and HA to demonstrate the interaction between Myc-Runx2 and HA-CBP.

Figure S10. Functional analysis of Runx2-3SA mutants.

(A) The ability of recombinant p38α to phosphorylate GST-Runx2 (WT) and GST-Runx2 (3SA) was analyzed by in vitro kinase assay (lower panel). Controls demonstrating equal Runx2 protein input by coomassie blue staining and lack of signal in the absence of recombinant $p38\alpha$ are provided (upper panels).

(B) HEK293 cells were transfected with HA-CBP, MKK6-glu and p38α together with Runx2-WT or Runx2-3SA as indicated. Cellular lysates were immunoprecipitated with anti-HA antibody and then immunoblotted with antibodies specific to Runx2 and HA to demonstrate the interaction between Runx2 and HA-CBP.

В

Tak1^{+/osx}

D

В

Parameters	Tak 1 ^{fl/fl}	Tak1 ^{osx}
	(n=6)	(n=6)
BV/TV (%)	7.91±1.26	3.73±0.61*
Tb.Th (μm)	29.83±2.15	23.32±1.32*
Tb.N (/mm)	2.58±0.22	1.56±0.21*
Tb.Sp (µm)	372±34	696±119*
MS/BS (%)	42.75±2.22	35.74±1.56*
MAR (µm/day)	6.08±0.20	5.09±0.69
BFR/BS (µm ³ /µm ² /year)	944±43	672±106*
BFR/BV (%/year)	6549±677	5798±905
BFR/TV (%/year)	480±31	207±40*
Ob.S/BS (%)	16.61±3.26	8.14±1.70*
N.Ob/T.Ar (/mm ²)	71.02±13.26	23.08±5.33*
N.Ob/B.Pm (/mm)	13.74±2.25	6.34±1.42*
OV/TV (%)	0.27±0.05	0.08±0.04*
OS/BS (%)	10.48±1.80	5.61±2.08
O.Th (µm)	4.96±0.23	2.97±0.72*
Oc.S/BS (%)	2.56±0.48	1.65±0.32
N.Oc/T.Ar (/mm ²)	4.80±1.03	2.69±0.53
N.Oc/B.Pm (/mm)	0.87±0.12	0.70±0.09
ES/BS (%)	1.76±0.37	1.58±0.38

Supplementary Table S1. Histomorphometry analysis of $Tak1^{osx}$ mice.

3 week old female $Tak1^{osx}$ and $Tak1^{fl/fl}$ mice were injected with calcein and 2 days later injected with daydemeclycycline. 1 day later mice were sacrificed and tibias processed for quantitative histomorphometry. *p<0.05 compared to $Tak1^{fl/fl}$, unpaired t test.