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In this issue of the JCI, the observation of the altered pathogenicity of aCryptococcus neoformans glucosylceramide
(GlcCer) mutant shines new light on the initiation of cryptococcal infection. Rittershaus and colleagues demonstrate that
the cell surface glycosphingolipid GlcCer is essential for the fungus to grow in the extracellular environments of the host
bloodstream and alveolar spaces of the lung, which, in contrast to the acidic intracellular environment of macrophages,
are characterized by a neutral pH (see the related article beginning on page 1651). Their findings establish an
unexpected connection between this glycosphingolipid and the fungal responses to physiological CO, and pH. They also

focus new attention on the therapeutic potential of anti-GlcCer antibodies found in convalescent sera.
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bolic stimuli and responding accordingly.
The recent studies described herein sup-
port an important role for SCD1 in the
metabolic response of these tissues and
the development of obesity and insulin
resistance. The mechanism for how SCD1
or its product, MUFAs, modulate metabo-
lism is unknown. However, the studies
by Gutiérrez-Juarez et al. highlight that
increased hepatic insulin sensitivity due to
liver-specific inhibition of SCD1 may exist
independent of body weight and paradoxi-
cally in the presence of increased liver TG
and long-chain fatty acyl-CoAs (10).
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In this issue of the JCI, the observation of the altered pathogenicity of a Cryp-
tococcus neoformans glucosylceramide (GlcCer) mutant shines new light on the
initiation of cryptococcal infection. Rittershaus and colleagues demonstrate
that the cell surface glycosphingolipid GlcCer is essential for the fungus to
grow in the extracellular environments of the host bloodstream and alveolar
spaces of the lung, which, in contrast to the acidic intracellular environment
of macrophages, are characterized by a neutral pH (see the related article
beginning on page 1651). Their findings establish an unexpected connection
between this glycosphingolipid and the fungal responses to physiological
CO; and pH. They also focus new attention on the therapeutic potential of
anti-GlcCer antibodies found in convalescent sera.

Cryptococcus neoformans is among the few fun-
gal pathogens with well-defined virulence
factors, including a polysaccharide capsule
and a melanin coat (1). The recent past has
witnessed the identification of many new
genes that impact C. neoformans virulence,
and in most cases the new genes ultimately
govern those known virulence factors. A
report from Rittershaus, Del Poeta, and
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colleagues in this issue of the JCI (2) is thus
surprising in that it establishes that a new
virulence regulator does not act through
any previously known virulence traits, but
through a connection between lipid-medi-
ated signaling and the pathogen’s response
to the CO; levels and pH of host tissue. The
report provides intriguing new insight into
the natural infection process and points to
the potential therapeutic significance of an
antifungal antibody response.

The connection between GlcCer and
C. neoformans virulence

C. neoformans is an opportunistic pathogen
that causes disseminated infection and
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meningoencephalitis in immunocompro-
mised hosts, especially those with AIDS
(1). Its close relative, Cryptococcus gattii, is a
primary pathogen that caused an outbreak
recently on Vancouver Island (3, 4). Infec-
tion begins with inhalation of airborne
spores or yeast cells. The organism is even-
tually phagocytosed by macrophages, in
which it survives as an intracellular patho-
gen (5). Rittershaus and colleagues show
that the poorly understood events that
occur between inhalation and macrophage
phagocytosis depend upon cryptococcal
synthesis of the sphingolipid glucosylce-
ramide (GlcCer) (2).

GlcCer is found at the surface of C. neo-
formans cells and accumulates at the neck
between the mother cell and the emerging
daughter cell. In order to determine the
function of GlcCer, the authors created a
mutant C. neoformans strain lacking GlcCer
synthase 1 (Gcesl), which they rigorously
show to be encoded by the gesI gene (2). This
Ages] mutant had an unusual phenotype: it
was completely avirulent in mice following
nasal inhalation, yet caused lethal infection
when delivered through intravenous injec-
tion (Figure 1). The inhaled organisms
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Natural C. neoformans infection is initiated after inhalation of airborne spores or cells. After reaching the lung alveoli, the organism is taken up by
macrophages into their acidic lysosomes, where the organism divides and disseminates. The report from Rittershaus and colleagues in this issue
of the JCI (2) shows that there is a critical extracellular growth phase after the organism reaches the lung, but before uptake by macrophages.
In this phase, the organism encounters the neutral pH and physiological (~5%) CO: level that characterizes host tissues. Rittershaus et al. find
that the fungal surface sphingolipid GlcCer is critical for growth under these specific conditions. Thus GlcCer is required for experimental murine
infections that are initiated by inhalation (A), but not for infections initiated by injection (B).

were largely confined to the lung, where
they were contained by surrounding layers
of host defense cells in what is known as a
granulomatous response. A battery of tests
of virulence factor production and known
attenuating defects failed to identify any
reasonable cause of the virulence defect.
The authors finally made what is believed
to be a novel observation: growth of the
Ages1 mutant was blocked specifically in
the presence of high (5%) CO; levels, and
only at neutral (as opposed to acidic) pH.
The AgesI mutant grows perfectly well with-
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in macrophages, where it is transported to
the acidic lysosome. However, it is unable
to traverse the tissue of the lung to reach
that intracellular sanctuary.

Implications of GlcCer function

This work (2) establishes a connection
among GlcCer function and 2 fungal
responses that are intimately tied to viru-
lence. The first is the response to neutral or
alkaline pH. This response and its relation-
ship to virulence are well established from
studies of the fungi Aspergillus, Saccharomy-
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ces, and Candida (6, 7). The Rim101/PacC
pH response pathway does not appear to
be conserved in C. neoformans, but there
are several other candidate pH response
mediators that are conserved, notably cal-
cineurin (8). The second relevant response
is to CO,. CO; levels are low (<0.04%) in
the atmosphere but high (~5%) in tissue,
and it has long been known that high CO,
levels induce C. neoformans capsule synthe-
sis (9). Our understanding of CO; sensing
has been revolutionized recently through
the work of Buck, Levin, and colleagues
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(10), whose studies reveal that soluble
adenylyl cyclase is an evolutionarily con-
served CO; sensor. Muhlschlegel’s lab has
extended that work elegantly with the
demonstration that C. neoformans adenylyl
cyclase, though membrane associated, is
nonetheless CO; responsive (11). Thus it
is possible that GlcCer function is tied to
adenylyl cyclase activity. But, as with any
rapidly evolving field, there are many other
equally plausible scenarios. Noteworthy in
that context is the work of Bahn et al. (12),
who showed that high CO; levels inhibit C.
neoformans sexual development, and this
inhibition requires the carbonic anhydrase
specified by the can2 gene. Although the
signal transduction pathway that mediates
sex inhibition is not known, the parallels
raise a simple question: is the can2 carbonic
anhydrase also required for CO; inhibition
of growth in the Ages] mutant? These sig-
nal transduction-related questions will
keep microbial molecular geneticists busy
for some time to come.

A second fascinating aspect of this study
is the insight it provides into the mecha-
nism of establishment of infection. The
path from inhalation to dissemination is
dimly lit, and the last major insight into
these events was the finding that C. neofor-
mans is a facultative intracellular pathogen
in vivo (5). With the present finding that
the AgesI mutant cannot effectively reach
the macrophage (2), one can begin to ask
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what functions permit the wild-type organ-
ism to do so. Perhaps most important is to
understand whether and how wild-type
cryptococci actively inhibit the protective
granulomatous response.

Finally, this study highlights a potential
therapeutic strategy. Convalescent sera
have been shown to contain fungus-specif-
ic anti-GlcCer antibodies (13). These anti-
bodies bind to surface-accessible GlcCer
and inhibit C. neoformans growth (13). The
newly revealed novel properties of the Ages1
mutant suggest that this antibody response
may be efficacious in blocking initiation of
infection and that mutation of the fungus
through loss of Ges1 function would not
cause a resistant infection.
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