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Identification of ACSS2 with 
computational genomics
Chronic kidney disease (CKD) is a major 
global health burden, resulting in 1.2 mil-
lion deaths and 28.0 million years of life 
lost annually (1, 2). Liu et al. (3) previous-
ly performed a large-scale human GWAS 
and presented hundreds of genomic loci 
with strong association with kidney func-
tion indicators such as estimated glo-
merular filtration rate. In this issue of the 
JCI, Mukhi and authors first integrated 
orthogonal data sets, including expres-
sion and methylation quantitative trait 
loci and a single-nucleus assay for trans-
posase accessible chromatin sequencing, 
to functionally annotate the GWAS results 
(4). With genetic mapping and statistical 
analysis, the authors prioritized several 
genes in close proximity on chromosome 
20, including acyl-CoA synthetase short-
chain family 2 (ACSS2), as potential kidney 
disease driver genes (Figure 1A) (4).

ACSS2 deletion protects 
against kidney disease
Mukhi and authors leveraged existing 
single-cell transcriptomics data, ISH, and 

immunostaining experiments to show that 
ACSS2 expression was highly specific to 
proximal tubule (PT) cells in human and 
mouse kidneys. Next, to study the func-
tional importance of ACSS2, they gener-
ated global Acss2–knockout mice (Acss2–/–) 
with the CRISPR/Cas9 system. In multiple 
mouse models of kidney disease, including 
adenine-induced nephropathy and unilat-
eral ureteral obstruction (UUO), Acss2–/– 
mice exhibited improved kidney function 
compared with control mice (Figure 1A), 
as reflected by reduced serum creatinine 
and blood urea nitrogen levels, improved 
tissue histology, and decreased expression 
of fibrosis markers such as fibronectin and 
α-smooth muscle actin. Of note, decreased 
ACSS2 expression was also observed in 
these bulk-level analyses, likely due to loss 
of PT cells upon kidney injury. A protec-
tive role for Acss2 deletion was also validat-
ed with in vitro experiments on primarily 
isolated tubular epithelial cells, in which 
TGF-β1–induced fibrotic marker expres-
sion could be reversed in Acss2–/– cells.

ACSS2 catalyzes the activation of ace-
tate into acetyl-CoA, which is subsequent-
ly used for fatty acid oxidation (FAO),  

cholesterol biosynthesis, fatty acid bio-
synthesis (i.e., de novo lipogenesis 
[DNL]), and histone posttranslational 
modifications (5, 6), but a role in CKD 
pathogenesis has not been described. To 
understand how this enzyme might affect 
kidney disease progression, the authors 
comprehensively analyzed the expres-
sion of marker genes for each pathway 
in Acss2–/– mice using a mouse model of 
kidney fibrosis. There were no substantial 
changes in histone acetylation, FAO, or 
cholesterol biosynthesis; however, genes 
involved in DNL, such as Fasn (encod-
ing fatty acid synthase), Acaca (encoding 
acetyl CoA carboxylase), and upstream 
regulators Srebp1 and Scap, were down-
regulated in Acss2–/– mice compared with 
wild-type mice. A reduction of DNL was 
also validated by a deuterated palmitate 
labeling experiment and Oil Red O stain-
ing, which suggested reduced lipid depo-
sition in the kidney of Acss2–/– mice with 
UUO injury. The authors also generated 
tubule-specific Fasn-knockout mice and 
observed improved kidney function after 
kidney injury. These investigations iden-
tify a role for ACSS2 in DNL and suggest 
that perturbation of DNL genes in kidney 
disease is protective.

The kidney is a highly metabolical-
ly active organ, and PTs use lipids as the 
primary fuel source for mitochondrial 
oxidative phosphorylation and energy 
generation (7). Lipid accumulation in PT 
cells has been a well-known characteristic 
of CKD, leading to intracellular lipotoxic-
ity and exacerbated tubular injury (8, 9). 
However, the mechanisms of lipid accu-
mulation remain unclear. The increased 
kidney lipid accumulation has in the past 
been interpreted to reflect either compro-
mised FAO (i.e., reduced lipid consump-
tion) (10, 11) or increased lipid intake 
through fatty acid transporters such as 
CD36 and FATP2 (12, 13). The finding in 
Mukhi et al. that DNL provided another 
source of lipid accumulation in kidney 
disease is therefore important. We and 
others (14, 15) recently described perilipin 
2 (PLIN2) as a marker of lipid droplets in 
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activation and pyroptosis signaling. Collec-
tively, these observations provide convinc-
ing evidence that pharmacological inhibi-
tion of DNL ameliorated kidney disease in 
mouse models through mechanisms link-
ing DNL and kidney fibrosis through mito-
chondrial ROS and NLRP3 inflammasome 
activation (Figure 1B).

Conclusions and future 
directions
Using large-scale human genetics and 
genomics analysis, this work identifies 
ACSS2 as a kidney disease risk gene. 
Through comprehensive in vitro and in 
vivo experiments, the authors demon-
strate the role of ACSS2 in DNL and the 
association of DNL with lipid accumu-
lation and kidney fibrosis. In addition, 
inhibition of DNL effectively mitigated 
disease progression and protected against 
mitochondrial defects and inflammasome 
hyperactivation in kidney tubular cells.

Several questions remain. (a) The 
genomic locus prioritized in the computa-
tional genomics analysis is a gene-dense 

Next, the authors investigated the 
nephroprotective mechanisms of DNL inhi-
bition. Using primary isolated tubule cells, 
they identified NADPH/NADP+ and GSH/
GSSH (oxidized to reduced glutathione) 
ratios after TGF-β1 treatment in wild-type 
cells. These ratios were lower in Acss2–/– cells 
or cells treated with FASNall, indicating 
reduced oxidative damage with DNL inhi-
bition. This finding was also supported by 
analysis of mitochondrial damage indica-
tors (e.g., mitochondrial superoxide levels 
and membrane potential), which revealed 
reduced mitochondrial ROS accumulation 
after DNL inhibition. To study whether the 
mitochondrial defect was accompanied by 
inflammasome activation and pyroptosis, 
the authors measured gene expression in 
the NLRP3 inflammasome pathway, includ-
ing NLRP3, CASP1, and GSDMD. These 
genes were upregulated after adenine- or 
UUO-induced mouse kidney injury, but 
DNL inhibition (through ACSS2i treatment, 
genetic Acss2 knockout, or tubule-specif-
ic Fasn knockout) reduced this upregula-
tion, suggesting reduced inflammasome  

tubular epithelial cells during kidney inju-
ry, and Mukhi et al. confirmed an upregu-
lation of Plin2 after kidney injury in their 
mouse models, as well as a decrease in 
Plin2 expression after ACSS2 loss, fur-
ther supporting the idea that inhibition 
of DNL can reduce lipid accumulation in 
kidney disease (4).

DNL as a therapeutic strategy
To evaluate DNL targeting as a potential 
therapeutic approach, the authors treat-
ed wild-type mice with pharmacological 
inhibitors of FASN or ACSS2 in the context 
of kidney injury (Figure 1A). Treatment 
with FASNall, a selective FASN inhibitor 
(16), decreased fibrotic gene expression, 
improved tissue histology, and resulted 
in less lipid deposition after UUO surgery 
compared with controls. Administration of 
TVB-3664, another FASN inhibitor, also 
ameliorated the disease responses in vitro. 
The authors also demonstrated that tar-
geting ACSS2 with ACSS2i, a small-mol-
ecule inhibitor, could protect mice from 
UUO-induced kidney fibrosis.

Figure 1. ACSS2 has a role in DNL and is implicated in kidney fibrosis. (A) ACSS2 was identified as a kidney disease risk gene in large-scale human 
genomics analysis. ACSS2, as well as other genes including FASN and ACACA, are involved in DNL. A protective role of DNL inhibition through either 
genetic deletion of Acss2, genetic deletion of Fasn, or pharmacological inhibition of DNL was observed in mouse models of kidney disease. (B) DNL 
inhibition results in a reduction of lipid accumulation, mitochondrial ROS, and inflammasome activation in tubular epithelial cells, which improves 
kidney function after injury. ECM, extracellular matrix.
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region containing multiple genes besides 
ACSS2. Whether other genes in this region 
are also disease-causing genes and how this 
locus is epigenetically regulated in disease 
are unknown. (b) It remains unclear wheth-
er ACSS2 is exclusively responsible for fatty 
acid synthesis in kidney or also involved in 
other related pathways. For example, genes 
associated with cholesterol biosynthesis, 
such as Hmgcs1 and Hmgcr, in the Acss2–/– 
mice showed lower expression than in wild-
type mice, although the variation was less 
pronounced compared with DNL genes. 
(c) The importance of DNL will need to be 
carefully evaluated in human CKD, and 
further experiments will be required to val-
idate the effectiveness and safety of DNL 
inhibition in humans.

Acknowledgments
Work in the Humphreys Lab is supported 
by NIH grants DK103740, U54DK137332, 
and UC2DK126024.

Address correspondence to: Benjamin 
D. Humphreys, Division of Nephrology, 
Department of Medicine, Washington  


