Gene symbol	Count per million	Log ₂ fold change	<i>p</i> value	FDR
IGLVI-63	2.479239684	5.446	8.41E-06	0.028050458
UBD	3.416763525	5.205	4.89E-08	0.001686146
KRT4	2.809991105	5.191	1.08E-05	0.028050458
LOC105375724	3.809394049	3.578	2.19E-05	0.030829178
LTA	2.001291919	3.365	0.00013041	0.049406587
IGLV3-22	2.511103253	3.266	2.51E-05	0.031705253
CXCL13	3.596567595	3.138	1.56E-05	0.028050458
VPREB3	1.922862637	2.799	1.24E-05	0.028050458
CXCL9	3.242140672	2.78	8.08E-06	0.028050458
TCL1A	2.280466157	2.773	2.21E-05	0.030829178
TMEM163	1.919053457	2.675	9.61E-05	0.046670237
IGKV7-3	2.863533857	2.67	2.95E-05	0.033461111
NCR3	1.758239343	2.658	4.63E-05	0.036352544
CCL19	4.877741778	2.613	9.43E-07	0.016252662
IGKV1D-37	1.230044563	2.612	7.06E-05	0.041981695
LTA	1.621659027	2.443	0.000128637	0.049276675
MMP9	2.405295351	2.361	8.68E-05	0.045060433
CD52	5.74789247	2.356	2.01E-05	0.030829178
CD19	2.36792619	2.281	0.000107506	0.04691603
PLA2G2D	3.920237621	2.169	0.000122961	0.049276675
RP11-330H6.5	1.766939444	2.163	9.55E-05	0.046670237
PPP1R18	1.617340638	2.154	4.51E-05	0.036352544
IGKV1-8	4.652770241	2.144	8.64E-05	0.045060433
LTB	2.231687832	2.072	4.48E-05	0.036352544

Supplemental Table 1. Differentially expressed genes in salivary glands between Sjögren's syndrome patients with high *BMP6* expression versus those with normal *BMP6* expression.

Gene symbol	Count per million	Log ₂ fold change	<i>p</i> value	FDR
IGKV2-10	1.707040236	2.034	1.43E-05	0.028050458
NKG7	4.076117313	2.013	7.70E-06	0.028050458
TIFAB	1.805860479	1.998	0.000104882	0.04691603
WDFY4	1.757147594	1.988	0.00010526	0.04691603
HCST	3.886703663	1.984	3.01E-05	0.033461111
BCL2A1	2.379617337	1.981	5.10E-05	0.03700639
CLECL1	2.216661299	1.972	0.00011509	0.047986684
ADAM19	3.888868174	1.943	3.49E-05	0.034783959
RBP5	2.090748562	1.924	1.17E-05	0.028050458
PTGDS	5.927266531	1.893	3.55E-05	0.034783959
IGKV10R22-1	2.410195285	1.887	6.05E-05	0.039337364
HLA-DRB1	6.657364793	1.872	7.05E-06	0.028050458
CMPK2	2.47488667	1.853	4.03E-06	0.028050458
TMC8	2.052861999	1.851	9.45E-06	0.028050458
POU2F2	3.306801345	1.834	5.15E-05	0.03700639
GZMK	3.312458993	1.834	7.04E-05	0.041981695
TFEC	2.385957817	1.822	9.75E-05	0.046670237
LGALS2	3.304511646	1.797	1.48E-05	0.028050458
IGHV4-4	1.495989033	1.796	5.78E-05	0.038847864
GZMA	2.88278428	1.78	1.48E-05	0.028050458
CD3D	4.540737092	1.757	2.24E-05	0.030829178
SLC15A3	1.95706469	1.729	0.000102935	0.04691603
ITGAX	4.663820874	1.723	2.67E-05	0.031705253
SPIB	3.503693733	1.714	0.000112996	0.047986684
OASL	3.118165737	1.704	8.65E-05	0.045060433
P2RX5	1.696457884	1.675	0.000115527	0.047986684

Gene symbol	Count per million	Log ₂ fold change	<i>p</i> value	FDR
CHST11	1.79255394	1.668	8.00E-05	0.045060433
RASGRP1	1.850078463	1.65	9.08E-05	0.045993801
CD72	2.128759224	1.644	2.53E-05	0.031705253
HLA-DRB3	3.192818499	1.639	6.53E-05	0.04096311
ITGAL	3.416188199	1.628	3.37E-05	0.034783959
ARHGAP9	2.758677331	1.609	3.74E-05	0.034836115
CD69	1.943597729	1.598	1.12E-05	0.028050458
TBC1D10C	2.316705466	1.57	5.86E-05	0.038847864
CSF2RB	3.037698016	1.568	1.63E-05	0.028050458
BMP6	1.62140251	1.518	0.000125796	0.049276675
LIMD2	2.747846772	1.515	6.68E-05	0.041103297
ANXA2R	2.705991112	1.486	8.57E-05	0.045060433
CD8A	2.874337505	1.48	3.98E-05	0.036088675
GPR65	2.336738777	1.464	4.42E-05	0.036352544
FCRL5	3.432757457	1.438	9.21E-05	0.045993801
CD37	4.247881191	1.433	6.70E-06	0.028050458
TRAF1	2.193123799	1.432	0.000127498	0.049276675
GVINP1	2.151973077	1.388	7.54E-05	0.04404202
PTPN7	2.729516376	1.379	5.43E-05	0.037423639
CD48	3.875190034	1.379	0.000107124	0.04691603
KIF20B	2.307512186	1.34	8.15E-05	0.045060433
SNX20	3.170497354	1.322	0.000101553	0.04691603
SERPINB9	5.728634271	1.321	1.50E-05	0.028050458
CERKL	2.198168143	1.312	4.79E-05	0.036686171
LY86	2.834416189	1.303	0.000127154	0.049276675
EPSTI1	3.513596227	1.298	8.23E-05	0.045060433

Gene symbol	Count per million	Log ₂ fold change	<i>p</i> value	FDR
PYHIN1	2.216694521	1.292	0.000124394	0.049276675
IL32	5.263001527	1.266	8.76E-05	0.045060433
SFMBT2	2.048830941	1.246	4.57E-05	0.036352544
PCED1B	2.876793685	1.234	6.37E-05	0.040669271
BCL2	2.579611406	1.205	0.000102361	0.04691603
APOBEC3D	4.706302587	1.181	1.81E-05	0.029672261
SEMA4D	4.13171056	1.174	4.64E-05	0.036352544
GRK6	2.368965859	1.143	2.62E-05	0.031705253
GLCCI1	3.598950935	1.106	5.12E-05	0.03700639
IRF7	2.585094745	1.08	5.26E-05	0.03700639
MEX3C	3.180689227	0.932	0.000111219	0.047929645
KRT38	1.578279786	-3.886	0.000123737	0.049276675
RPL3P4	3.677699188	-4.622	3.63E-05	0.034783959
HNRNPA1P40	4.294464998	-5.5	8.46E-06	0.028050458
BPIFA1	3.613842413	-5.681	3.20E-05	0.034458527

Genes shown in bold were reported to be regulated by LPS.

Search term		Hit	Match
"Sjogren syndrome"	+ "Proteomics"	183	17
"Sjogren syndrome"	+ " HMGB1 "	10	3
	+ "Heat shock protein"	60	2
	+ "Hyaluronan"	36	1
	+ "Fibronectin"	30	1
	+ "Histone"	88	0
	+ "Fibrinogen"	25	0
	+ "S100"	9	0
	+ "Defensin"	9	0
	+ "Syndecans"	7	0
	+ "Tenascin C"	4	0
	+ "Decorin"	2	0
	+ "Heparan sulfate"	2	0
	+ "Biglycan"	1	0
	+ "Granulysin"	0	0
	+ "Glypicans"	0	0
	+ "HMGN1"	0	0

Supplemental Table 2. Literature searching strategy and result.

HMGB1, high mobility group box 1; HMGN1, high mobility group nucleosome binding domain 1.

Reference		Sample	Potential TLR4 ligands increased in SS
Human Salivary Proteome Wiki *		Saliva	HSP70, S100, Histones
Sembler-Møller ML (1)	2020	Saliva	HMGB1
Wei P (2)	2020	Saliva	
Cecchettini A (3)	2019	Saliva	HSP70, S100, Histones
Aqrawi LA (4)	2019	Saliva	
Hall SC (5)	2017	Saliva	Histones
Aqrawi LA (6)	2017	Saliva	HSP70
Deutsch O (7)	2015	Saliva	HSP70, S100, Histones, Fibrinogen
Ambatipudi KS (8)	2012	Saliva	HSP70, S100, Histones, Fibrinogen
Baldini C (9)	2011	Saliva	S100
Fleissig Y (10)	2009	Saliva	S100, Fibrinogen
Silvestre FJ (11)	2009	Saliva	Fibronectin
Peluso G (12)	2007	Saliva	Defensin
Hu S (13)	2007	Saliva	
Giusti L (14)	2007	Saliva	
Ryu OH (15)	2006	Saliva	
Tishler M (16)	1998	Saliva	Hyaluronan
Hjelmervik TO (17)	2009	MSG	HSP60, HSP70, HSP90, Decorin
Ek M (18)	2006	MSG	HMGB1
Bodewes ILA (19)	2019	Serum	
Kanne AM (20)	2018	Serum	HMGB1
Nishikawa A (21)	2016	Serum	
Bårdsen K (22)	2016	Plasma	HSP90
Dupire G (23)	2012	Serum	HMGB1
Aragona P (24)	1999	Serum	HSP60

Supplemental Table 3. Potential TLR4 ligands reported to be increased in Sjögren's syndrome (SS) patients.

Proteomic studies are indicated as bold. HSP, heat shock protein; HMGB1, high mobility group box 1; MSG, minor salivary gland. *https://salivaryproteome.nidcr.nih.gov.

Supplemental Table 4. Demographic and clinical characteristics between Sjögren's syndrome patients with high *BMP6* expression (n = 20) versus those with normal *BMP6* expression (n = 23).

Characteristics	High BMP6	Normal BMP6	<i>p</i> value*		
Age, years	55 ± 12	50 ± 16	0.230		
Female, <i>n</i> (%)	20 (100)	23 (100)	-		
Low salivary flow (<0.1 mL/min), <i>n</i> (%)	14 (70)	16 (70)	0.975		
Positive Schirmer's test (\leq 5mm/5min), <i>n</i> (%)	10 (50)	9 (39)	0.474		
Anti-SSA Ab positive, n (%)	14 (70)	16 (70)	0.975		
Anti-SSB Ab positive, n (%)	11 (55)	11 (48)	0.639		
Focus score	1.2 ± 1.3	1.6 ± 1.1	0.264		
Prior medications during 3 months before recruitment					
Glucocorticoids, n (%)	9 (45)	7 (30)	0.361		
Immunosuppressants [†] , n (%)	9 (45)	6 (26)	0.219		
Hydroxychloroquine, n (%)	3 (15)	1 (4)	0.323		

[†]Immunosuppressants include methotrexate, azathioprine, cyclosporine and leflunomide. *Fisher's exact test for categorical variables and *t*-test for continuous variables.

	Adherent			Non-adherent		
	Sham	LPS	HSP70	Sham	LPS	HSP70
Number of cells	9272	11844	32415	12005	9547	11674
Mean reads per cell	8011	25671	32590	10577	15112	37946
Median reads per cell	901	1715	1506	1052	1315	1424
Number of reads	$74 imes 10^{6}$	304×10^{6}	$1056 imes 10^6$	127×10^{6}	144×10^{6}	$443 imes 10^6$
Valid Barcodes	96.5%	97.0%	96.6%	97.0%	96.9%	96.1%
Valid UMIs	99.9%	99.9%	99.9%	99.9%	99.9%	99.9%
Sequencing Saturation	32.0%	53.1%	59.2%	44.9%	50.3%	74.7%
Reads Mapped to Genome	97.6%	97.6%	97.5%	97.3%	97.2%	97.4%
Reads Mapped to Transcriptome	58.5%	60.8%	57.8%	56.6%	55.5%	56.7%
Fraction Reads in Cells	94.7%	94.7%	86.0%	93.2%	93.0%	94.5%
Total Genes Detected	19619	21756	23764	20530	20476	21875
Median UMI Counts per Cell	2048	4949	4782	2537	3293	4188

Supplemental Table 5. Quality assessment summary of PBMCs samples.

UMI, unique molecular identifier.

Supplemental Figure 1. *BMP6* mRNA expressing cells in salivary glands of patients with Sjögren's syndrome. Representative images of dual *in situ* hybridization for *BMP6* (white) and immunofluorescence for CD3 (green), CD19 (red), CD138 (green) or CD56 (red) on labial minor salivary gland sections. Scale bars = $50 \mu m$.

Supplemental Figure 2. Single-cell RNA sequencing libraries of human PBMCs. PBMCs were captured 20 hours after treatment with sham control, LPS or HSP70. The adherent and non-adherent populations were processed separately. (**A**) Annotated PBMCs are displayed in Uniform Manifold Approximation and Projection (UMAP) format with distribution of cells expressing the representative cell markers. (**B**) Proportion of each cell type among adherent and non-adherent groups. (**C**) Proportion and relative expression of indicted genes among adherent and non-adherent groups.

Supplemental Figure 3. *BMP6* expression is upregulated via TLR4 pathway in human PBMCs. (A) Human PBMCs isolated from patients with Sjögren's syndrome (SS, n = 5) or healthy volunteers (HVs, n = 5) were treated with LPS (100 ng/mL) for 20 hours. (B) PBMCs from HVs (n = 5) were treated with LPS ± TAK242 (40 µM) for 20 hours. (C) PBMCs from HVs (n = 3) were treated with recombinant HSP70 (1 µg/mL) ± CUCPT22 (20 µM) or TAK242 (40 µM) for 20 hours. *BMP6* transcript was quantified using $\Delta\Delta$ Ct method relative to *ACTB* in adherent and non-adherent population. Values shown are mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, t-test with multiple testing correction using Dunnett's method.

Supplemental Figure 4. *BMP6* expression is not stimulated by extracellular vesicles from LAMP3-overexpressing HSG cells (A) Schematic methods of the following *in vitro* assays. (B) Representative Western blot with indicated antibodies using lysate of HSG cells 72 hours after transfection with empty and/or *LAMP3* expression plasmids. (C) HSP70 concentration in culture supernatant collected 96 hours after transfection. (D) Culture supernatant of HSG cells was collected 96 hours after transfection with empty and/or *LAMP3* expression plasmids and extracellular vesicles were isolated from supernatant. THP1 cells were treated with unfractionated supernatant or isolated EVs for 20 hours. (E) THP1 cells were treated with culture supernatant of HSG cells \pm HSP70 neutralizing antibody (1 µg/mL) or control IgG (1 µg/mL). *BMP6* transcript was quantified using $\Delta\Delta$ Ct method relative to *ACTB*. Values shown are mean \pm SEM from three or five independent experiments. **p* < 0.05, ***p* < 0.01, *t*-test with multiple testing correction using Tukey's method.

Supplemental Figure 5. LAMP3, TLR4 and BMP6 expression in salivary glands. (A) Representative images of immunofluorescence for LAMP3 (red, left panel), TLR4 (yellow, center panel) or BMP6 (blue, right panel) and nucleus (DAPI, gray) on labial minor salivary gland sections from patients with Sjögren's syndrome (SS, n = 7) or non-SS sicca. (n = 6). Original magnification: 40x. (**B**) Bar chart showing mean (\pm SD) relative change of each protein expression area. **p < 0.01, *t*-test. (**C**) Correlation between BMP6 and LAMP3 or TLR4 expression in labial minor salivary glands.

REFERENCES

- Sembler-Møller ML, Belstrøm D, Locht H, Pedersen AML. Proteomics of saliva, plasma, and salivary gland tissue in Sjögren's syndrome and non-Sjögren patients identify novel biomarker candidates. *J Proteomics* 2020;225:103877.
- 2. Wei P, Xing Y, Li B, Chen F, Hua H. Proteomics-based analysis indicating α-enolase as a potential biomarker in primary Sjögren's syndrome. *Gland Surg* 2020;9:2054-63.
- Cecchettini A, Finamore F, Ucciferri N, Donati V, Mattii L, Polizzi E, et al. Phenotyping multiple subsets in Sjögren's syndrome: a salivary proteomic SWATH-MS approach towards precision medicine. *Clin Proteomics* 2019;16:26.
- 4. Aqrawi LA, Galtung HK. Proteomic and histopathological characterisation of sicca subjects and primary Sjögren's syndrome patients reveals promising tear, saliva and extracellular vesicle disease biomarkers. *Arthritis Res Ther* 2019;21:181.
- Hall SC, Hassis ME, Williams KE, Albertolle ME, Prakobphol A, Dykstra AB, et al. Alterations in the Salivary Proteome and N-Glycome of Sjögren's Syndrome Patients. J Proteome Res 2017;16:1693-705.
- Aqrawi LA, Galtung HK, Vestad B, Øvstebø R, Thiede B, Rusthen S, et al. Identification of potential saliva and tear biomarkers in primary Sjögren's syndrome, utilising the extraction of extracellular vesicles and proteomics analysis. *Arthritis Res Ther* 2017;19:14.
- Deutsch O, Krief G, Konttinen YT, Zaks B, Wong DT, Aframian DJ, et al. Identification of Sjögren's syndrome oral fluid biomarker candidates following high-abundance protein depletion. *Rheumatology (Oxford)* 2015;54:884-90.
- Ambatipudi KS, Swatkoski S, Moresco JJ, Tu PG, Coca A, Anolik JH, et al. Quantitative proteomics of parotid saliva in primary Sjögren's syndrome. *Proteomics* 2012;12:3113-20.
- Baldini C, Giusti L, Ciregia F, Da Valle Y, Giacomelli C, Donadio E, et al. Proteomic analysis of saliva: a unique tool to distinguish primary Sjögren's syndrome from secondary Sjögren's syndrome and other sicca syndromes. *Arthritis Res Ther* 2011;13:R194.

- Fleissig Y, Deutsch O, Reichenberg E, Redlich M, Zaks B, Palmon A, et al. Different proteomic protein patterns in saliva of Sjögren's syndrome patients. *Oral Dis* 2009;15:61-8.
- Silvestre FJ, Puente A, Bagán JV, Castell JV. Presence of fibronectin peptides in saliva of patients with Sjögren's syndrome: a potential indicator of salivary gland destruction. *Med Oral Patol Oral Cir Bucal* 2009;14:e365-70.
- 12. Peluso G, De Santis M, Inzitari R, Fanali C, Cabras T, Messana I, et al. Proteomic study of salivary peptides and proteins in patients with Sjögren's syndrome before and after pilocarpine treatment. *Arthritis Rheum* 2007;56:2216-22.
- 13. Hu S, Wang J, Meijer J, Ieong S, Xie Y, Yu T, et al. Salivary proteomic and genomic biomarkers for primary Sjögren's syndrome. *Arthritis Rheum* 2007;56:3588-600.
- Giusti L, Baldini C, Bazzichi L, Ciregia F, Tonazzini I, Mascia G, et al. Proteome analysis of whole saliva: a new tool for rheumatic diseases--the example of Sjögren's syndrome. *Proteomics* 2007;7:1634-43.
- Ryu OH, Atkinson JC, Hoehn GT, Illei GG, Hart TC. Identification of parotid salivary biomarkers in Sjogren's syndrome by surface-enhanced laser desorption/ionization timeof-flight mass spectrometry and two-dimensional difference gel electrophoresis. *Rheumatology (Oxford)* 2006;45:1077-86.
- 16. Tishler M, Yaron I, Shirazi I, Yaron M. Salivary and serum hyaluronic acid concentrations in patients with Sjögren's syndrome. *Ann Rheum Dis* 1998;57:506-8.
- Hjelmervik TO, Jonsson R, Bolstad AI. The minor salivary gland proteome in Sjögren's syndrome. *Oral Dis* 2009;15:342-53.
- Ek M, Popovic K, Harris HE, Naucler CS, Wahren-Herlenius M. Increased extracellular levels of the novel proinflammatory cytokine high mobility group box chromosomal protein 1 in minor salivary glands of patients with Sjogren's syndrome. *Arthritis Rheum* 2006;54:2289-94.
- Bodewes ILA, van der Spek PJ, Leon LG, Wijkhuijs AJM, van Helden-Meeuwsen CG, Tas L, et al. Fatigue in Sjögren's Syndrome: A Search for Biomarkers and Treatment Targets. *Front Immunol* 2019;10:312.
- 20. Kanne AM, Julich M, Mahmutovic A, Troster I, Sehnert B, Urbonaviciute V, et al. Association of High Mobility Group Box Chromosomal Protein 1 and Receptor for

Advanced Glycation End Products Serum Concentrations With Extraglandular Involvement and Disease Activity in Sjogren's Syndrome. *Arthritis Care Res (Hoboken)* 2018;70:944-8.

- 21. Nishikawa A, Suzuki K, Kassai Y, Gotou Y, Takiguchi M, Miyazaki T, et al. Identification of definitive serum biomarkers associated with disease activity in primary Sjögren's syndrome. *Arthritis Res Ther* 2016;18:106.
- Bårdsen K, Nilsen MM, Kvaløy JT, Norheim KB, Jonsson G, Omdal R. Heat shock proteins and chronic fatigue in primary Sjögren's syndrome. *Innate Immun* 2016;22:162-7.
- 23. Dupire G, Nicaise C, Gangji V, Soyfoo MS. Increased serum levels of high-mobility group box 1 (HMGB1) in primary Sjögren's syndrome. *Scand J Rheumatol* 2012;41:120-3.
- 24. Aragona P, Magazzù G, Macchia G, Bartolone S, Di Pasquale G, Vitali C, et al. Presence of antibodies against Helicobacter pylori and its heat-shock protein 60 in the serum of patients with Sjögren's syndrome. *J Rheumatol* 1999;26:1306-11.